Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0298237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635689

RESUMO

Fungi are among key actors in the biogeochemical processes occurring in mangrove ecosystems. In this study, we investigated the changes of fungal communities in selected mangrove species by exploring differences in diversity, structure and the degree of ecological rearrangement occurring within the rhizospheres of four mangrove species (Sonneratia alba, Rhizophora mucronata, Ceriops tagal and Avicennia marina) at Gazi Bay and Mida Creek in Kenya. Alpha diversity investigation revealed that there were no significant differences in species diversity between the same mangrove species in the different sites. Rather, significant differences were observed in fungal richness for some of the mangrove species. Chemical parameters of the mangrove sediment significantly correlated with fungal alpha diversity and inversely with richness. The fungal community structure was significantly differentiated by mangrove species, geographical location and chemical parameters. Taxonomic analysis revealed that 96% of the amplicon sequence variants belonged to the Phylum Ascomycota, followed by Basidiomycota (3%). Predictive FUNGuild and co-occurrence network analysis revealed that the fungal communities in Gazi Bay were metabolically more diverse compared to those of Mida Creek. Overall, our results demonstrate that anthropogenic activities influenced fungal richness, community assembly and their potential ecological functions in the mangrove ecosystems investigated.


Assuntos
Ecossistema , Micobioma , Rizosfera , Quênia , Baías
2.
PLoS One ; 16(3): e0248485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33755699

RESUMO

Prokaryotic communities play key roles in biogeochemical transformation and cycling of nutrients in the productive mangrove ecosystem. In this study, the vertical distribution of rhizosphere bacteria was evaluated by profiling the bacterial diversity and community structure in the rhizospheres of four mangrove species (Sonneratia alba, Rhizophora mucronata, Ceriops tagal and Avicennia marina) from Mida Creek and Gazi Bay, Kenya, using DNA-metabarcoding. Alpha diversity was not significantly different between sites, but, significantly higher in the rhizospheres of S. alba and R. mucronata in Gazi Bay than in Mida Creek. Chemical parameters of the mangrove sediments significantly correlated inversely with alpha diversity metrics. The bacterial community structure was significantly differentiated by geographical location, mangrove species and sampling depth, however, differences in mangrove species and sediment chemical parameters explained more the variation in bacterial community structure. Proteobacteria (mainly Deltaproteobacteria and Gammaproteobacteria) was the dominant phylum while the families Desulfobacteraceae, Pirellulaceae and Syntrophobacteraceae were dominant in both study sites and across all mangrove species. Constrained redundancy analysis indicated that calcium, potassium, magnesium, electrical conductivity, pH, nitrogen, sodium, carbon and salinity contributed significantly to the species-environment relationship. Predicted functional profiling using PICRUSt2 revealed that pathways for sulfur and carbon metabolism were significantly enriched in Gazi Bay than Mida Creek. Overall, the results indicate that bacterial community composition and their potential function are influenced by mangrove species and a fluctuating influx of nutrients in the mangrove ecosystems of Gazi Bay and Mida Creek.


Assuntos
Baías/microbiologia , Metagenoma , Proteobactérias/classificação , Rizosfera , Áreas Alagadas , Ecossistema , Quênia
3.
IMA Fungus ; 3(1): 99-102, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23155505

RESUMO

The African Mycological Association (AMA) promotes mycology amongst members in Africa and globally. The AMA has about 200 members, mostly from African states but also with strong representation from Europe and USA, amongst others. Recent efforts by members of the AMA focused on reviving and developing mycological research and networking in Africa. A great deal must, however, still be done to promote the AMA under African mycologists, and those elsewhere with interests in Africa. African mycologists also experience challenges typical of the developing world and a great deal of fungi still needs to be discovered. This can also be seen as representing great opportunities for research and collaboration. Several issues pertinent to mycology in Africa were discussed during Special Interest Group sessions of the 9th International Mycological Congress in 2010, and through several opinion pieces contributed by AMA members in the AMA newsletter, MycoAfrica. This contribution serves as a document to summarise these in a form that can be presented to fellow mycologists, biologists and other scientists, relevant government departments, funding bodies and Non-Governmental Organizations and that pins down the importance of mycology, the status thereof in Africa and the need to promote it more.

4.
Braz. j. microbiol ; 42(2): 508-513, Apr.-June 2011. tab
Artigo em Inglês | LILACS | ID: lil-589997

RESUMO

A green house study was conducted to investigate the ability of an isolate of Trichoderma harzianum (P52) and arbuscular mycorrhizal fungi (AMF) in enhancing growth and control of a wilt pathogen caused by Fusarium oxysporum f. sp. lycopersici in tomato seedlings. The plants were grown in plastic pots filled with sterilized soils. There were four treatments applied as follows; P52, AMF, AMF + P52 and a control. A completely randomized design was used and growth measurements and disease assessment taken after 3, 6 and 9 weeks. Treatments that significantly (P < 0.05) enhanced heights and root dry weights were P52, AMF and a treatment with a combination of both P52 and AMF when compared the control. The treatment with both P52 and AMF significantly (P < 0.05) enhanced all growth parameters (heights; shoot and root dry weight) investigated compared to the control. Disease severity was generally lower in tomato plants grown with isolate P52 and AMF fungi either individually or when combined together, though the effect was not statistically significant (P0.05). A treatment combination of P52 + AMF had less trend of severity as compared to each individual fungus. T. harzianum and AMF can be used to enhance growth in tomato seedlings.

5.
Braz J Microbiol ; 42(2): 508-13, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24031662

RESUMO

A green house study was conducted to investigate the ability of an isolate of Trichoderma harzianum (P52) and arbuscular mycorrhizal fungi (AMF) in enhancing growth and control of a wilt pathogen caused by Fusarium oxysporum f. sp. lycopersici in tomato seedlings. The plants were grown in plastic pots filled with sterilized soils. There were four treatments applied as follows; P52, AMF, AMF + P52 and a control. A completely randomized design was used and growth measurements and disease assessment taken after 3, 6 and 9 weeks. Treatments that significantly (P < 0.05) enhanced heights and root dry weights were P52, AMF and a treatment with a combination of both P52 and AMF when compared the control. The treatment with both P52 and AMF significantly (P < 0.05) enhanced all growth parameters (heights; shoot and root dry weight) investigated compared to the control. Disease severity was generally lower in tomato plants grown with isolate P52 and AMF fungi either individually or when combined together, though the effect was not statistically significant (P≥ 0.05). A treatment combination of P52 + AMF had less trend of severity as compared to each individual fungus. T. harzianum and AMF can be used to enhance growth in tomato seedlings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA