Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 42(32): 11607-13, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23824307

RESUMO

A mixed amine pyridine polydentate Fe(II) complex was covalently tethered in hexagonal mesoporous silica of the MCM-41 type. Metal site isolation was generated using adsorbed tetramethylammonium cations acting as a patterned silanol protecting mask and trimethylsilylazane as a capping agent. Then, the amine/pyridine ligand bearing a tethering triethoxysilane group was either grafted to such a pretreated silica surface prior to or after complexation to Fe(II). These two synthetic routes, denoted as two-step and one-step, respectively, were also applied to fumed silica for comparison, except that the silanol groups were capped after tethering the metal unit. The coordination of the targeted complex was monitored using UV-visible spectrophotometry and, according to XPS, the best control was achieved inside the channels of the mesoporous silica for the two-step route. For the solid prepared according to the one-step route, tethering of the complex occurred mainly at the entrance of the channel.


Assuntos
Materiais Biomiméticos/química , Ferro/química , Compostos Organometálicos/química , Dióxido de Silício/química , Aminas/química , Materiais Biomiméticos/síntese química , Peróxido de Hidrogênio/química , Ligantes , Nanopartículas/química , Compostos Organometálicos/síntese química , Oxidantes/química , Porosidade
2.
Part Fibre Toxicol ; 9: 46, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23181604

RESUMO

Given the increasing use of carbon nanotubes (CNT) in composite materials and their possible expansion to new areas such as nanomedicine which will both lead to higher human exposure, a better understanding of their potential to cause adverse effects on human health is needed. Like other nanomaterials, the biological reactivity and toxicity of CNT were shown to depend on various physicochemical characteristics, and length has been suggested to play a critical role. We therefore designed a comprehensive study that aimed at comparing the effects on murine macrophages of two samples of multi-walled CNT (MWCNT) specifically synthesized following a similar production process (aerosol-assisted CVD), and used a soft ultrasonic treatment in water to modify the length of one of them. We showed that modification of the length of MWCNT leads, unavoidably, to accompanying structural (i.e. defects) and chemical (i.e. oxidation) modifications that affect both surface and residual catalyst iron nanoparticle content of CNT. The biological response of murine macrophages to the two different MWCNT samples was evaluated in terms of cell viability, pro-inflammatory cytokines secretion and oxidative stress. We showed that structural defects and oxidation both induced by the length reduction process are at least as responsible as the length reduction itself for the enhanced pro-inflammatory and pro-oxidative response observed with short (oxidized) compared to long (pristine) MWCNT. In conclusion, our results stress that surface properties should be considered, alongside the length, as essential parameters in CNT-induced inflammation, especially when dealing with a safe design of CNT, for application in nanomedicine for example.


Assuntos
Macrófagos/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Aerossóis , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Nanotubos de Carbono/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/genética , Oxirredutases/metabolismo , Tamanho da Partícula , RNA Mensageiro/metabolismo , Propriedades de Superfície
3.
ACS Nano ; 6(10): 8753-7, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22947018

RESUMO

(La,Sr)MnO(3) manganite (LSMO) has emerged as the standard ferromagnetic electrode in organic spintronic devices due to its highly spin-polarized character and air stability. Whereas organic semiconductors and polymers have been mainly envisaged to propagate spin information, self-assembled monolayers (SAMs) have been overlooked and should be considered as promising materials for molecular engineering of spintronic devices. Surprisingly, up to now the first key step of SAM grafting protocols over LSMO surface thin films is still missing. We report the grafting of dodecyl (C12P) and octadecyl (C18P) phosphonic acids over the LSMO half-metallic oxide. Alkylphosphonic acids form ordered self-assembled monolayers, with the phosphonic group coordinated to the surface and alkyl chains tilted from the surface vertical by 43° (C12P) and 27° (C18P). We have electrically characterized these SAMs in nanodevices and found that they act as tunnel barriers, opening the door toward the integration of alkylphosphonic acid//LSMO SAMs into future molecular/organic spintronic devices such as spin OLEDs.


Assuntos
Cristalização/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Semicondutores , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Marcadores de Spin , Propriedades de Superfície
4.
Langmuir ; 28(32): 11767-78, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22793962

RESUMO

The spontaneous reaction of diazonium salts on various substrates has been widely employed since it consists of a simple immersion of the substrate in the diazonium salt solution. As electrochemical processes involving the same diazonium salts, the spontaneous grafting is assumed to give covalently poly(phenylene)-like bonded films. Resistance to solvents and to ultrasonication is commonly accepted as indirect proof of the existence of a covalent bond. However, the most relevant attempts to demonstrate a metal-C interface bond have been obtained by an XPS investigation of spontaneously grafted films on copper. Similarly, our experiments give evidence of such a bond in spontaneously grafted films on nickel substrates in acetonitrile. In the case of gold substrates, the formation of a spontaneous film was unexpected but reported in the literature in parallel to our observations. Even if no interfacial bond was observed, formation of the films was explained by grafting of aryl cations or radicals on the surface arising from dediazoniation, the film growing later by azo coupling, radical addition, or cationic addition on the grafted phenyl layer. Nevertheless, none of these mechanisms fits our experimental results showing the presence of an Au-N bond. In this work, we present a fine spectroscopic analysis of the coatings obtained on gold and nickel substrates that allow us to propose a chemical structure of such films, in particular, their interface with the substrates. After testing the most probable mechanisms, we have concluded in favor of the involvement of two complementary mechanisms which are the direct reaction of diazonium salts with the gold surface that accounts for the observed Au-N interfacial bonds as well as the formation of aryl cations able to graft on the substrate through Au-C linkages.

5.
Chem Commun (Camb) ; 48(38): 4627-9, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22473416

RESUMO

The relationship between the morphology of polypyrrole and their electrocatalytic performances towards the oxygen reduction reaction (ORR) in alkaline media is described; annealed polypyrrole with granular- and tubules-like morphology exhibited different catalytic efficiencies.

6.
ChemSusChem ; 5(4): 647-51, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22389330

RESUMO

High-performance oxygen reduction reaction (ORR) catalysts based on metal-free nitrogen-containing precursors and carbon nanotubes are reported. The investigated systems allow the evaluation of the effect of nitrogen-containing groups towards ORR and the results show that the catalysts are compatible with the conditions encountered in alkaline fuel cells, exhibiting good catalytic activity and stability compared with conventional Pt/C electrocatalyst.


Assuntos
Nanotubos de Carbono/química , Nitrogênio/química , Oxigênio/química , Tetrazóis/química , Triazóis/química , Catálise , Eletroquímica , Concentração de Íons de Hidrogênio , Oxirredução
7.
Dalton Trans ; 41(15): 4445-50, 2012 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-22344390

RESUMO

Sequential growth in solution (SGS) was performed for the magnetic cyanide-bridged network obtained from the reaction of Ni(H(2)O)(2+) and Cr(CN)(6)(3-) (referred to as NiCr) on a Si(100) wafer already functionalized by a Ni(II) complex. The growth process led to isolated dots and a low coverage of the surface. We used the NiFe network as a template to improve the growth of the magnetic network. We elaborated alternate NiFe (paramagnetic)-NiCr (ferromagnetic) ultrathin films around 6 nm thick. The magnetic behaviour confirmed the alternate structure with the ferromagnetic zones isolated between the paramagnetic ones since the evolution of the blocking temperature is consistent with the evolution of the layers' thickness expected from the SGS process.

8.
Dalton Trans ; 41(5): 1582-90, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22159371

RESUMO

Controlling the elaboration of Coordination Networks (CoNet) on surfaces at the nanoscale remains a challenge. One suitable technique is the Sequential Growth in Solution (SGS), which has the advantage to be simple, cheap and fast. We addressed two issues in this article: i) the controlled synthesis of ultra thin films of CoNet (thickness lower than 10 nm), and ii) the investigation of the influence of the precursors' concentration on the growth process. Si(100) was used because it is possible to prepare atomically flat Si-H surfaces, which is necessary for the growth of ultrathin films. We used, as a model system, the sequential reactions of K(4)[Fe(II)(CN)(6)] and [Ni(II)(H(2)O)(6)]Cl(2) that occur by the substitution of the water molecules in the coordination sphere of Ni(II) by the nitrogen atoms of ferrocyanide. We demonstrated that the nature of the deposited film depends mainly on the relative concentration of the anchoring sites versus the precursors' solution. Attenuated Total Reflection Fourier Transformed Infra Red (ATR-FTIR), X-ray reflectivity, X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM) were used to characterize the steps of the growth process.

9.
Phys Chem Chem Phys ; 13(48): 21600-7, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22068682

RESUMO

One of the major limitations yet to the global implementation of polymer electrolyte membrane fuel cells (PEMFCs) is the cathode catalyst. The development of efficient platinum-free catalysts is the key issue to solve the problem of slow kinetics of the oxygen reduction reaction (ORR) and high cost. We report a promising catalyst for ORR prepared through the annealing treatment under inert conditions of the cobalt-benzotriazole (Co-BTA) complex supported on carbon nanotubes (CNTs). The N-rich benzotriazole precursor was chosen based on its ability to complex Co(II) ions and generate under annealing highly reactive radicals able to tune the physicochemical properties of CNTs. X-Ray photoelectron spectroscopy (XPS) was used to follow the surface structure changes and highlight the active electrocatalytic sites towards the ORR. To achieve further evaluation of the catalysts in acidic medium, voltamperometry, rotating disk electrode (RDE), rotating ring-disk electrode (RRDE) and half-cell measurements were performed. The resulting catalysts (Co/N/CNTs) all show catalytic activity towards the ORR, the most active one resulting from annealing at 700 °C. The overall electron transfer number for the catalyzed ORR was determined to be ∼3.7 with no change upon the catalyst loading, suggesting that the ORR was dominated by a 4e(-) transfer process. The results indicate a promising alternative cathode catalyst for ORR in fuel cells, although its performance is still lower (overpotential around 110 mV evaluated by RDE and RRDE) than the reference Pt/C catalyst.

10.
Chemphyschem ; 12(16): 2973-8, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21922628

RESUMO

The "3D amino-induced electroless plating" (3D-AIEP) process is an easy and cost-effective way to produce metallic patterns onto flexible polymer substrates with a micrometric resolution and based on the direct printing of the mask with a commercial printer. Its effectiveness is based on the covalent grafting onto substrates of a 3D polymer layer which presents the ability to entrap Pd species. Therefore, this activated Pd-loaded and 3D polymer layer acts both as a seed layer for electroless metal growth and as an interdigital layer for enhanced mechanical properties of the metallic patterns. Consequently, flexible and transparent poly(ethylene terephtalate) (PET) sheets were selectively metalized with nickel or copper patterns. The electrical properties of the obtained metallic patterns were also studied.

11.
Langmuir ; 27(8): 4397-402, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21413746

RESUMO

Homogeneous two-dimensional structures of CeVO(4) nanowires (NWs) deposited on silicon substrates are obtained by means of the bubble deposition method (BDM). Surface wettability (i.e., surface energy) and film ripening (i.e., film thickness) are two major parameters in nanoparticle confinement and deposition. As the presence of surfactant could be detrimental to applications, a washing treatment is developed without CeVO(4) chemical changes or NW film modifications. Careful investigations of the film topography are carried out by atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) is used to check the chemical composition of the film at different stages. Finally, samples made by BDM are compared to those made by dip-coating method, demonstrating the higher efficiency of the BDM in providing large areas of well-organized and dense CeVO(4) monolayer.

12.
Chem Commun (Camb) ; 46(46): 8731-3, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-20967386

RESUMO

SWNT-porphyrin/phthalocyanine conjugates are described and fully characterised; their optical and electrochemical properties are investigated.


Assuntos
Dendrímeros/síntese química , Indóis/química , Metaloporfirinas/química , Metaloporfirinas/síntese química , Nanotubos de Carbono/química , Zinco/química , Dendrímeros/química , Eletroquímica , Isoindóis , Estrutura Molecular
13.
Chem Commun (Camb) ; 46(24): 4327-9, 2010 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-20461273

RESUMO

Isolated nanometric objects of the nickel-iron cyanide-bridged coordination network are obtained by a sequential growth on "molecular seeds" anchored on Si(100) surfaces. Control of the density and the size of the nano-objects is achieved by imposing a growth process without side nucleation.

14.
ACS Appl Mater Interfaces ; 2(4): 1177-83, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20361751

RESUMO

A new, efficient, palladium- and chromium-free process for the electroless plating of acrylonitrile-butadiene-styrene (ABS) polymers has been developed. The process is based on the ion-exchange properties of poly(acrylic acid) (PAA) chemically grafted onto ABS via a simple and one-step method that prevents using classical surface conditioning. Hence, ABS electroless plating can be obtained in three steps, namely: (i) the grafting of PAA onto ABS, (ii) the copper Cu(0) seeding of the ABS surface, and (iii) the nickel or copper metallization using commercial-like electroless plating bath. IR, XPS, and SEM were used to characterize each step of the process, and the Cu loading was quantified by atomic absorption spectroscopy. This process successfully compares with the commercial one based on chromic acid etching and palladium-based seed layer, because the final metallic layer showed excellent adhesion with the ABS substrate.


Assuntos
Resinas Acrílicas/química , Eletroquímica/métodos , Polímeros/química , Cátions , Quelantes/química , Cromatos/química , Cobre/química , Metais/química , Microscopia Eletrônica de Varredura/métodos , Plásticos/química , Espectrofotometria Atômica/métodos , Espectrofotometria Infravermelho/métodos , Propriedades de Superfície
15.
J Am Chem Soc ; 131(42): 15394-402, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19919163

RESUMO

The attempt to decorate carbon nanotubes with organic molecules as a powerful means to form new functional materials has attracted broad attention in the scientific community. Here, we report the functionalization of single-walled carbon nanotubes (SWNTs) with zinc porphyrins (ZnP) using very mild conditions to afford a series of SWNTs-ZnP (1 and 2) electron donor-acceptor conjugates. Owing to the presence of either one or two ZnP, introduced via "click chemistry", different absorption cross sections were realized. Important in this context is that the covalent linkages between SWNT and ZnP were corroborated by monitoring the diagnostic signature of the nitrogen atoms as part of the formed triazole ring by X-ray photoelectron spectroscopy (XPS). The resulting SWNTs-ZnP 1 and 2 were fully characterized. This characterization was complemented by a full-fledged investigation of their electrochemical and photophysical properties. In particular, appreciably strong electronic coupling between the photo- and electroactive constituents (i.e., SWNT and ZnP) led to rapid excited-state deactivation of ZnP via charge transfer to the nanotubes. Here, the different absorption cross sections throughout the visible part of the solar spectrum turned out to be valuable in enhancing the overall light-harvesting features. Upon photoexcitation, for both SWNTs-ZnP 1 and 2, radical ion pair states (i.e., reduced SWNT and oxidized ZnP) are formed. The charge-separated states decay to regenerate the singlet ground state with lifetimes of 820 and 200 ps for 1 and 2, respectively.


Assuntos
Dendrímeros/química , Nanotubos de Carbono/química , Porfirinas/química , Microscopia de Força Atômica , Estrutura Molecular , Nanotubos de Carbono/ultraestrutura
16.
Chem Commun (Camb) ; (15): 2020-2, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15834492

RESUMO

The functionalisation of a Si(100) silicon wafer allows for the oriented grafting of a monolayer of Mn12 nanomagnets using a two-step procedure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...