Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 980513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479071

RESUMO

Intraoperative radiotherapy (IORT) has become a growing therapy for early-stage breast cancer (BC). Some studies claim that wound fluid (seroma), a common consequence of surgical excision in the tumor cavity, can reflect the effects of IORT on cancer inhibition. However, further research by our team and other researchers, such as analysis of seroma composition, affected cell lines, and primary tissues in two-dimensional (2D) and three-dimensional (3D) culture systems, clarified that seroma could not address the questions about IORT effectiveness in the surgical site. In this review, we mention the factors involved in tumor recurrence, direct or indirect effects of IORT on BC, and all the studies associated with BC seroma to attain more information about the impact of IORT-induced seroma to make a better decision to remove or remain after surgery and IORT. Finally, we suggest that seroma studies cannot decipher the mechanisms underlying the effectiveness of IORT in BC patients. The question of whether IORT-seroma has a beneficial effect can only be answered in a trial with a clinical endpoint, which is not even ongoing.

2.
Iran J Pharm Res ; 21(1): e123828, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35765505

RESUMO

Surgery is the standard treatment for breast malignancies, although local and distant relapses might occur. Previous studies have shown that surgery-induced wound fluid (WF) contains tumor-initiating and progressing factors; however, these experiments have only been performed on breast cancer cell lines. Since a cancerous tumor includes various components like malignant cells, recruited non-malignant cells and extracellular matrix, those investigations that only focused on cancer cell lines themselves are not adequate to establish WF's effects. We conducted a 3D model study where we mimicked the tumor microenvironment to re-assess previous in-vitro findings. We generated human-derived breast tumor spheroids from 23 patient specimens, dissociated and cultured them in microfluidic devices. The spheroids from each sample were treated with the patients' WF or RPMI medium. The proportion of live and dead cells was assessed using live/dead assays and fluorescent imaging on day 6. In 22 samples, the percentage of live cells was significantly higher in the WF-treated group than in the RPMI-treated group. In one sample, we observed an opposite trend. The results were contrary in one of the samples, and we reported that case with more details. We compared the two groups using the 3D culture environment of human-derived tumor spheroids prepared from different microfluidic devices to mimic the tumor environment heterogeneity. Our findings showed that most patients with breast cancer benefit from surgical wound healing. However, removal of the surgical-induced serum may not be a method of inhibiting the tumor in all patients.

3.
Sci Rep ; 12(1): 7668, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538133

RESUMO

Intraoperative radiotherapy (IORT) could abrogate cancer recurrences, but the underlying mechanisms are unclear. To clarify the effects of IORT-induced wound fluid on tumor progression, we treated breast cancer cell lines and human-derived tumor spheroids in 2D and microfluidic cell culture systems, respectively. The viability, migration, and invasion of the cells under treatment of IORT-induced wound fluid (WF-RT) and the cells under surgery-induced wound fluid (WF) were compared. Our findings showed that cell viability was increased in spheroids under both WF treatments, whereas viability of the cell lines depended on the type of cells and incubation times. Both WFs significantly increased sub-G1 and arrested the cells in G0/G1 phases associated with increased P16 and P21 expression levels. The expression level of Caspase 3 in both cell culture systems and for both WF-treated groups was significantly increased. Furthermore, our results revealed that although the migration was increased in both systems of WF-treated cells compared to cell culture media-treated cells, E-cadherin expression was significantly increased only in the WF-RT group. In conclusion, WF-RT could not effectively inhibit tumor progression in an ex vivo tumor-on-chip model. Moreover, our data suggest that a microfluidic system could be a suitable 3D system to mimic in vivo tumor conditions than 2D cell culture.


Assuntos
Neoplasias da Mama , Ferida Cirúrgica , Neoplasias da Mama/radioterapia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Microfluídica , Recidiva Local de Neoplasia , Esferoides Celulares
4.
Arch Iran Med ; 25(2): 78-84, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35429943

RESUMO

BACKGROUND: Although investigating the probable side effects of post intraoperative radiotherapy wound fluid secretion (PIWFS) is crucial, especially in clinical cases, no report has been published on the effect of PIWFS on the remaining tumor cells (in the vital state) in cavity side margins or surrounding regions. These tumor cells might be directly/indirectly exposed to intraoperative radiation therapy (IORT). Here, for the first time, we investigated the effect of PIWFS on tumor cells of the same patient extracted from the excised tumor in the spheroid form. METHODS: We generated 8 human-derived breast tumor spheroids from 4 patient specimens who received to IORT, dissociated and cultured them in microfluidic devices. The spheroids from each sample were treated with the patients' PIWFS and DMEM medium separately. Two different parameters, called area and number of detached cells (NDCs), were determined and investigated to evaluate the spheroids' vital and proliferative states. RESULTS: The results showed severe transformation in tumor spheroids' function into more invasive and proliferative functions after treatment with PIWFS. CONCLUSION: Although the radiation-induced bystander effect may have a role in this observation, further experiments must be done to better clarify the probable desired or non-desired effects of post-IORT secretion for both the remaining tumor cells and the surrounding immune cells.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/patologia , Feminino , Humanos
5.
Biotechnol Prog ; 38(1): e3222, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34734683

RESUMO

Mesenchymal stem cells (MSCs) are crucial cells that play an essential role in the maintenance, self-renewal, and proliferation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) in the bone marrow niche. It has been proven that MSCs can be used as a feeder layer for the proliferation of HSCs to enhance the number of HPCs and HSCs. Recently, it has been demonstrated that MSC-derived exosome (MSC-DE) has critical roles in different biological processes in bone marrow (BM). In the current research, we examined the importance of hypoxia-preconditioned MSC-derived exosomes (HP-MSC-DE) and normoxia-preconditioned MSC-derived exosomes (NP-MSC-DE) in the self-renewal and long-term clonogenic potential of umbilical cord blood hematopoietic stem cells (UCB-HSCs). We showed that the secretion rate and component of the exosome (EXO) were changed in HP-MSC-DE compared to NP-MSC-DE. Notably, the Jagged-1 (Notch ligand) content of EXO was much more plentiful in HP-MSC-DE compared to NP-MSC-DE. The addition of HP-MSC-DE enriched by Jagged-1 to the co-culture system stimulates the Notch pathway on the membrane of UCB-HSCs CD133+ and enhances proliferation. HP-MSC-DE induction using an anti-Jagged-1 antibody suppresses all biological functions of the Jagged-1 protein. Importantly, HP-MSC-DE containing Jagged-1 could change the biology of HSCs CD133+ and increase the self-renewal capacity, quiescence, and clonogenic potential of CD133+ cells. Moreover, they support generating a large number of primitive cells. Our study signified the importance of HP-MSC-DE in the proliferation of UCB-HSCs CD133+, which manifested therapeutic applications of EXO in the enhanced number of HSCs and subsequently alleviated bone marrow transplantation.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Diferenciação Celular/fisiologia , Proliferação de Células , Técnicas de Cocultura , Exossomos/metabolismo , Sangue Fetal/metabolismo , Células-Tronco Hematopoéticas , Humanos , Hipóxia/metabolismo , Proteína Jagged-1/metabolismo , Transdução de Sinais
6.
Biomed Pharmacother ; 138: 111544, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34311539

RESUMO

The RNA-dependent RNA polymerase (RdRp) and 3C-like protease (3CLpro) from SARS-CoV-2 play crucial roles in the viral life cycle and are considered the most promising targets for drug discovery against SARS-CoV-2. In this study, FDA-approved drugs were screened to identify the probable anti-RdRp and 3CLpro inhibitors by molecular docking approach. The number of ligands selected from the PubChem database of NCBI for screening was 1760. Ligands were energy minimized using Open Babel. The RdRp and 3CLpro protein sequences were retrieved from the NCBI database. For Homology Modeling predictions, we used the Swiss model server. Their structure was then energetically minimized using SPDB viewer software and visualized in the CHIMERA UCSF software. Molecular dockings were performed using AutoDock Vina, and candidate drugs were selected based on binding affinity (∆G). Hydrogen bonding and hydrophobic interactions between ligands and proteins were visualized using Ligplot and the Discovery Studio Visualizer v3.0 software. Our results showed 58 drugs against RdRp, which had binding energy of - 8.5 or less, and 69 drugs to inhibit the 3CLpro enzyme with a binding energy of - 8.1 or less. Six drugs based on binding energy and number of hydrogen bonds were chosen for the next step of molecular dynamics (MD) simulations to investigate drug-protein interactions (including Nilotinib, Imatinib and dihydroergotamine for 3clpro and Lapatinib, Dexasone and Relategravir for RdRp). Except for Lapatinib, other drugs-complexes were stable during MD simulation. Raltegravir, an anti-HIV drug, was observed to be the best compound against RdRp based on docking binding energy (-9.5 kcal/mole) and MD results. According to the MD results and binding energy, dihydroergotamine is a suitable candidate for 3clpro inhibition (-9.6 kcal/mol). These drugs were classified into several categories, including antiviral, antibacterial, anti-inflammatory, anti-allergic, cardiovascular, anticoagulant, BPH and impotence, antipsychotic, antimigraine, anticancer, and so on. The common prescription-indications for some of these medication categories appeared somewhat in line with manifestations of COVID-19. We hope that they can be beneficial for patients with certain specific symptoms of SARS-CoV-2 infection, but they can also probably inhibit viral enzymes. We recommend further experimental evaluations in vitro and in vivo on these FDA-approved drugs to assess their potential antiviral effect on SARS-CoV-2.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Reposicionamento de Medicamentos , Inibidores Enzimáticos/uso terapêutico , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/efeitos adversos , COVID-19/virologia , Proteases 3C de Coronavírus/metabolismo , Di-Hidroergotamina/uso terapêutico , Aprovação de Drogas , Interações Hospedeiro-Patógeno , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , RNA Polimerase Dependente de RNA/metabolismo , Raltegravir Potássico/uso terapêutico , SARS-CoV-2/enzimologia , Estados Unidos , United States Food and Drug Administration
7.
Gastroenterol Hepatol Bed Bench ; 13(Suppl1): S18-S28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585000

RESUMO

Colorectal cancer (CRC) is a heterogeneous disease with various genetic and epigenetic factors leading to difficulties in response to both the therapy and drug resistance. Moreover, even in tumors with similar histopathological characteristics, different responses and molecular features could be observed because of the genetic basis and its interactions with the living environment. Through personalized medicine, we can classify patients into separate groups according to their genetic and epigenetic features and their susceptibility for a specific disease which could help with choosing the best therapeutic approach. In this review, genetic and epigenetic factors that cause heterogeneity in colorectal cancer are evaluated and proper drug administration in both chemotherapy and target therapy are suggested.

8.
Pharmgenomics Pers Med ; 12: 59-73, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31213877

RESUMO

Breast cancer is the fifth cause of cancer death among women worldwide and represents a global health concern due to the lack of effective therapeutic regimens that could be applied to all disease groups. Nowadays, strategies based on pharmacogenomics constitute novel approaches that minimize toxicity while maximizing drug efficacy; this being of high importance in the oncology setting. Besides, genetic profiling of malignant tumors can lead to the development of targeted therapies to be included in effective drug regimens. Advances in molecular diagnostics have revealed that breast cancer is a multifaceted disease, characterized by inter-tumoral and intra-tumoral heterogeneity and, unlike the past, molecular classifications based on the expression of individual biomarkers have led to devising novel therapeutic strategies that improve patient survival. In this review, we report and discuss the molecular classification of breast cancer subtypes, the heterogeneity resource, and the advantages and disadvantages of current drug regimens with consideration of pharmacogenomics in response and resistance to treatment.

9.
Iran J Parasitol ; 12(3): 441-445, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979355

RESUMO

BACKGROUND: Leishmaniasis is a neglected disease affecting millions of people worldwide. The treatment of the disease is hampered due to high cost, toxicity and the crisis of drug resistance. Polytope approaches of genetic immunization could be a strategy for prevention of infectious diseases. Furthermore, the identification of Leishmania genome sequence and the application of bioinformatics assist us to devise an effective vaccine's candidate. METHODS: A linear sequence from predicted epitopes of GP63, LACK and CPC antigens was designed and was optimized using online available algorithms. The synthesized sequence (LAKJB93) was ligated to pEGFP-N1 plasmid. RESULTS: The 264bp sequence was cloned at N terminal of GFP into pEGFP_N1 expression vector and transfect into CHO cell line. Construct was efficient expressed in CHO cells. CONCLUSION: The protein of LAKJB93 cosnstruct was expressed in CHO cells successfully.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...