Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 195(5): 3067-3095, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36520354

RESUMO

The role of the shape of the nanostructure on the antibacterial effects of ZnO nanodisks has been investigated by detailed mass spectrometry-based proteomics along with other spectroscopic and microscopic studies on E. coli. The primary interaction study of the E. coli cells in the presence of ZnO nanodisks showed rigorous cell surface damage disrupting the cell wall/membrane components detected by microscopic and ATR-FTIR studies. Protein profiling of whole-cell extracts in the presence and absence of ZnO nanodisks identified several proteins that are upregulated and downregulated under the stress of the nanodisks. This suggests that the bacterial response to the primary stress leads to a secondary impact of ZnO nanodisk toxicity via regulation of the expression of specific proteins. Results showed that the ZnO nanodisks lead to the over-expression of peptidyl-dipeptidase Dcp, Transketolase-1, etc., which are important to maintaining the osmotic balance in the cell. The abrupt change in osmotic pressure leads to mechanical injury to the membrane, and nutritional starvation conditions, which is revealed from the expression of the key proteins involved in membrane-protein assembly, maintaining membrane integrity, cell division processes, etc. Thus, indicating a deleterious effect of ZnO nanodisk on the protective layer of E. coli. ZnO nanodisks seem to primarily affect the protective membrane layer, inducing cell death via the development of osmotic shock conditions, as one of the possible reasons for cell death. These results unravel a unique behavior of the disk-shaped ZnO nanostructure in executing lethality in E. coli, which has not been reported for other known shapes or morphologies of ZnO nanoforms.


Assuntos
Nanoestruturas , Óxido de Zinco , Escherichia coli , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanoestruturas/química , Membrana Celular
2.
Sci Rep ; 7(1): 7825, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798385

RESUMO

We report the experimental observation of variable range hopping conduction in focused-ion-beam (FIB) fabricated ultra-narrow nanowires of topological insulator (Bi2Se3). The value of the exponent (d + 1)-1 in the hopping equation was extracted as [Formula: see text]for different widths of nanowires, which is the proof of the presence of Efros-Shklovskii hopping transport mechanism in a strongly disordered system. High localization lengths (0.5 nm, 20 nm) were calculated for the devices. A careful analysis of the temperature dependent fluctuations present in the magnetoresistance curves, using the standard Universal Conductance Fluctuation theory, indicates the presence of 2D topological surface states. Also, the surface state contribution to the conductance was found very close to one conductance quantum. We believe that our experimental findings shed light on the understanding of quantum transport in disordered topological insulator based nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...