Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 8(10): 2133-2148, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36102590

RESUMO

Polymers of d-glutamic acid (PDGA) form the capsule of the highly virulent Ames strain of B. anthracis. PDGA is antiphagocytic and weakly immunogenic; it enables the bacteria to evade the innate immune responses. CapD is an enzyme that catalyzes the covalent anchoring of PDGA. CapD is an Ntn-amido hydrolase that utilizes an internal Thr-352 as its nucleophile and general acid and base. An internal cleavage produces a free N-terminal Thr-352 and a short and long polypeptide chain. The chains were circularly permuted (CP) to move Thr-352 to the N-terminus of the polypeptide. We previously showed that a branched PEG-CapDS334C-CP could protect mice (80% survival) against a 5 LD50 challenge with B. anthracis Ames without the use of antibiotics, monoclonals, or vaccines. In attempts to improve the in vivo circulation time of CapD and enhance its avidity to its polymeric substrate, an Fc-domain of a mouse IgG1 was fused to CapDS334C-CP and the linker length and sequence were optimized. The resulting construct, Fc-CapDS334C-CP, then was pegylated with a linear 2 kDa mPEG at S334C to produce mPEG-Fc-CapDS334C-CP. Interestingly, the fusion of the Fc-domain and incorporation of the S334C mutation imparted acid stability, but slightly reduced the kcat (∼ 2-fold lower). In vivo, the measured protein concentration in sera was higher for the Fc-fusion constructs compared to the mPEG-Fc-CapDS334C-CP. However, the exposure calculated from measured sera enzymatic activity was higher for the mPEG-CapDS334C-CP. The pegylated Fc-fusion was less active than the PEG-CapDS334C-CP, but detectable in sera at 24 h by immunoblot. Here we describe the engineering of a soluble, active, pegylated Fc-fusion of B. anthracis CapD (mPEG-Fc-CapD-CP) with activity in vitro, in serum, and on encapsulated bacteria.


Assuntos
Antraz , Bacillus anthracis , Animais , Antraz/tratamento farmacológico , Antraz/microbiologia , Antibacterianos/metabolismo , Bacillus anthracis/genética , Ácido Glutâmico/metabolismo , Hidrolases/metabolismo , Imunoglobulina G/metabolismo , Camundongos , Polietilenoglicóis
2.
PLoS Pathog ; 18(9): e1010851, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36174087

RESUMO

During infection, Bacillus anthracis bacilli encounter potent antimicrobial peptides (AMPs) such as defensins. We examined the role that B. anthracis capsule plays in protecting bacilli from defensins and other cationic AMPs by comparing their effects on a fully virulent encapsulated wild type (WT) strain and an isogenic capsule-deficient capA mutant strain. We identified several human defensins and non-human AMPs that were capable of killing B. anthracis. The human alpha defensins 1-6 (HNP-1-4, HD-5-6), the human beta defensins 1-4 (HBD-1-4), and the non-human AMPs, protegrin, gramicidin D, polymyxin B, nisin, and melittin were all capable of killing both encapsulated WT and non-encapsulated capA mutant B. anthracis. However, non-encapsulated capA mutant bacilli were significantly more susceptible than encapsulated WT bacilli to killing by nearly all of the AMPs tested. We demonstrated that purified capsule bound HBD-2, HBD-3, and HNP-1 in an electrophoretic mobility shift assay. Furthermore, we determined that the capsule layer enveloping WT bacilli bound and trapped HBD-3, substantially reducing the amount reaching the cell wall. To assess whether released capsule might also play a protective role, we pre-incubated HBD-2, HBD-3, or HNP-1 with purified capsule before their addition to non-encapsulated capA mutant bacilli. We found that free capsule completely rescued the capA mutant bacilli from killing by HBD-2 and -3 while killing by HNP-1 was reduced to the level observed with WT bacilli. Together, these results suggest an immune evasion mechanism by which the capsule, both that enveloping the bacilli and released fragments, contributes to virulence by binding to and inhibiting the antimicrobial activity of cationic AMPs.


Assuntos
Bacillus anthracis , Nisina , alfa-Defensinas , beta-Defensinas , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Defensinas/genética , Defensinas/farmacologia , Gramicidina , Humanos , Meliteno , Polimixina B , alfa-Defensinas/farmacologia
3.
Immunohorizons ; 5(2): 81-89, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563659

RESUMO

The capsule of Bacillus anthracis is composed of a d isomer poly-γ-glutamic acid polymer, which is especially nonstimulatory to dendritic cells, even more so than similar mixed d, l isomer polymers from nonpathogenic Bacillus species. Capsule is an essential virulence factor for B. anthracis, protecting the bacilli from phagocytosis by innate immune cells. In this study, we demonstrate that encapsulation provides a further pathogenic advantage by shielding more inflammatory Ags on the bacillus surface, thereby reducing dendritic cell responses. We exposed human immature dendritic cells (DCs) to increasing multiplicities of infection (MOIs) of killed B. anthracis bacilli from the fully encapsulated wild-type Ames strain (WT) and an isogenic capsule-deficient strain (capA mutant). Both strains elicited robust cytokine responses, but IL-23, TNF-α, and IL-10 were significantly reduced in response to the encapsulated WT compared with capA mutant up to an MOI of 15. capA mutant bacilli could induce phenotypic maturation of immature DCs with upregulation of MHC classes I and II, CD83, and CCR7 at an MOI of 3.75, whereas encapsulated WT bacilli still did not induce significant upregulation of MHC classes I and II at an MOI of 15. DCs exposed to capA mutant bacilli (MOI 3.75) exhibited CCR7-dependent chemotaxis that was comparable to that of LPS-stimulated controls, whereas DCs exposed to encapsulated WT bacilli exhibited significantly less chemotaxis. We conclude that capsule shields more inflammatory surface Ags, delaying development of an adaptive immune response by reducing TNF-α, thereby inhibiting DC maturation.


Assuntos
Bacillus anthracis/imunologia , Cápsulas Bacterianas/imunologia , Células Dendríticas/imunologia , Macrófagos/imunologia , Ácido Poliglutâmico/análogos & derivados , Citocinas/metabolismo , Humanos , Imunidade Inata , Fagocitose , Ácido Poliglutâmico/imunologia , Fator de Necrose Tumoral alfa/metabolismo
4.
J Immunol ; 204(5): 1263-1273, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31932496

RESUMO

The poly-γ-glutamic acid (PGA) capsule produced by Bacillus anthracis is composed entirely of d-isomer glutamic acid, whereas nonpathogenic Bacillus species produce mixed d-, l-isomer PGAs. To determine if B. anthracis PGA confers a pathogenic advantage over other PGAs, we compared the responses of human innate immune cells to B. anthracis PGA and PGAs from nonpathogenic B. subtilis subsp. chungkookjang and B. licheniformis Monocytes and immature dendritic cells (iDCs) responded differentially to the PGAs, with B. anthracis PGA being least stimulatory and B. licheniformis PGA most stimulatory. All three elicited IL-8 and IL-6 from monocytes, but B. subtilis PGA also elicited IL-10 and TNF-α, whereas B. licheniformis PGA elicited all those plus IL-1ß. Similarly, all three PGAs elicited IL-8 from iDCs, but B. subtilis PGA also elicited IL-6, and B. licheniformis PGA elicited those plus IL-12p70, IL-10, IL-1ß, and TNF-α. Only B. licheniformis PGA induced dendritic cell maturation. TLR assays also yielded differential results. B. subtilis PGA and B. licheniformis PGA both elicited more TLR2 signal than B. anthracis PGA, but only responses to B. subtilis PGA were affected by a TLR6 neutralizing Ab. B. licheniformis PGA elicited more TLR4 signal than B. anthracis PGA, whereas B. subtilis PGA elicited none. B. anthracis PGA persisted longer in high m.w. form in monocyte and iDC cultures than the other PGAs. Reducing the m.w. of B. anthracis PGA reduced monocytes' cytokine responses. We conclude that B. anthracis PGA is recognized less effectively by innate immune cells than PGAs from nonpathogenic Bacillus species, resulting in failure to induce a robust host response, which may contribute to anthrax pathogenesis.


Assuntos
Bacillus anthracis/imunologia , Bacillus licheniformis/imunologia , Bacillus subtilis/imunologia , Células Dendríticas/imunologia , Imunidade Inata , Macrófagos/imunologia , Monócitos/imunologia , Ácido Poliglutâmico/imunologia , Citocinas/imunologia , Feminino , Humanos , Masculino
5.
Infect Immun ; 82(8): 3405-16, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24891109

RESUMO

The antiphagocytic capsule of Bacillus anthracis is a major virulence factor. We hypothesized that it may also mediate virulence through inhibition of the host's immune responses. During an infection, the capsule exists attached to the bacterial surface but also free in the host tissues. We sought to examine the impact of free capsule by assessing its effects on human monocytes and immature dendritic cells (iDCs). Human monocytes were differentiated into iDCs by interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF) over 7 days in the presence of capsule derived from wild-type encapsulated B. anthracis Ames (WT) or a control preparation from an isogenic B. anthracis Ames strain that produces only 2% of the capsule of the WT (capA mutant). WT capsule consistently induced release of IL-8 and IL-6 while the capA mutant control preparation elicited either no response or only a minimal release of IL-8. iDCs that were differentiated in the presence of WT capsule had increased side scatter (SSC), a measure of cellular complexity, when assessed by flow cytometry. iDCs differentiated in the presence of WT capsule also matured less well in response to subsequent B. anthracis peptidoglycan (Ba PGN) exposure, with reduced upregulation of the chemokine receptor CCR7, reduced CCR7-dependent chemotaxis, and reduced release of certain cytokines. Exposure of naive differentiated control iDCs to WT capsule did not alter cell surface marker expression but did elicit IL-8. These results indicate that free capsule may contribute to the pathogenesis of anthrax by suppressing the responses of immune cells and interfering with the maturation of iDCs.


Assuntos
Bacillus anthracis/imunologia , Cápsulas Bacterianas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Tolerância Imunológica , Células Cultivadas , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo
6.
J Virol ; 82(1): 419-27, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17959667

RESUMO

Infection of erythroid progenitor cells by Friend spleen focus-forming virus (SFFV) leads to acute erythroid hyperplasia and eventually to erythroleukemia in susceptible strains of mice. The viral envelope protein, SFFV gp55, forms a complex with the erythropoietin receptor (EpoR) and a short form of the receptor tyrosine kinase Stk (sf-Stk), activating both and inducing Epo-independent proliferation. Recently, we discovered that coexpression of SFFV gp55 and sf-Stk is sufficient to transform NIH 3T3 and primary fibroblasts. In the current study, we demonstrate that sf-Stk and its downstream effectors are critical to this transformation. Unlike SFFV-derived erythroleukemia cells, which depend on PU.1 expression for maintenance of the transformed phenotype, SFFV gp55-sf-Stk-transformed fibroblasts are negative for PU.1. Underscoring the importance of sf-Stk to fibroblast transformation, knockdown of sf-Stk abolished the ability of these cells to form anchorage-independent colonies. Like SFFV-infected erythroid cells, SFFV gp55-sf-Stk-transformed fibroblasts express high levels of phosphorylated MEK, ERK, phosphatidylinositol 3-kinase (PI3K), Gab1/2, Akt, Jun kinase (JNK), and STAT3, but unlike virus-infected erythroid cells they fail to express phosphorylated STATs 1 and 5, which may require involvement of the EpoR. In addition, the p38 mitogen-activated protein kinase (MAPK) stress response is suppressed in the transformed fibroblasts. Inhibition of either JNK or the PI3K pathway decreases both monolayer proliferation and anchorage-independent growth of the transformed fibroblasts as does the putative kinase inhibitor luteolin, but inhibition of p38 MAPK has no effect. Our results indicate that sf-Stk is a molecular endpoint of transformation that could be targeted directly or with agents against its downstream effectors.


Assuntos
Transformação Celular Viral/fisiologia , Fibroblastos/virologia , Receptores Proteína Tirosina Quinases/fisiologia , Vírus Formadores de Foco no Baço/fisiologia , Proteínas do Envelope Viral/fisiologia , Animais , Proliferação de Células , Inativação Gênica , Camundongos , Células NIH 3T3 , Proteínas Quinases/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA