Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Insects ; 13(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35206713

RESUMO

The adaptive significance of sympatric mitochondrial (mtDNA) variation and the role of selective mechanisms that maintain it are debated to this day. Isofemale lines of Drosophila obscura collected from four populations were backcrossed within populations to construct experimental lines, with all combinations of mtDNA Cyt b haplotypes and nuclear genetic backgrounds (nuDNA). Individuals of both sexes from these lines were then subjected to four fitness assays (desiccation resistance, developmental time, egg-to-adult viability and sex ratio) on two experimental temperatures to examine the role of temperature fluctuations and sex-specific selection, as well as the part that interactions between the two genomes play in shaping mtDNA variation. The results varied across populations and fitness components. In the majority of comparisons, they show that sympatric mitochondrial variants affect fitness. However, their effect should be examined in light of interactions with nuDNA, as mito-nuclear genotype was even more influential on fitness across all components. We found both sex-specific and temperature-specific differences in mitochondrial and mito-nuclear genotype ranks in all fitness components. The effect of temperature-specific selection was found to be more prominent, especially in desiccation resistance. From the results of different components tested, we can also infer that temperature-specific mito-nuclear interactions rather than sex-specific selection on mito-nuclear genotypes have a more substantial role in preserving mtDNA variation in this model species.

3.
Insects ; 12(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34940211

RESUMO

Life history traits determine the persistence and reproduction of each species. Factors that can affect life history traits are numerous and can be of different origin. We investigated the influence of population origin and heavy metal exposure on microbiota diversity and two life history traits, egg-to-adult viability and developmental time, in Drosophila melanogaster and Drosophila subobscura, grown in the laboratory on a lead (II) acetate-saturated substrate. We used 24 samples, 8 larval and 16 adult samples (two species × two substrates × two populations × two sexes). The composition of microbiota was determined by sequencing (NGS) of the V3-V4 variable regions of the 16S rRNA gene. The population origin showed a significant influence on life history traits, though each trait in the two species was affected differentially. Reduced viability in D. melanogaster could be a cost of fast development, decrease in Lactobacillus abundance and the presence of Wolbachia. The heavy metal exposure in D. subobscura caused shifts in developmental time but maintained the egg-to-adult viability at a similar level. Microbiota diversity indicated that the Komagataeibacter could be a valuable member of D. subobscura microbiota in overcoming the environmental stress. Research on the impact of microbiota on the adaptive response to heavy metals and consequently the potential tradeoffs among different life history traits is of great importance in evolutionary research.

4.
Mol Biol Evol ; 38(12): 5782-5805, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34469576

RESUMO

Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in >20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This data set, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental metadata. A web-based genome browser and web portal provide easy access to the SNP data set. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan data set. Our resource will enable population geneticists to analyze spatiotemporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.


Assuntos
Drosophila melanogaster , Metagenômica , Animais , Drosophila melanogaster/genética , Frequência do Gene , Genética Populacional , Genômica
5.
Virus Evol ; 7(1): veab031, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34408913

RESUMO

Drosophila melanogaster is an important model for antiviral immunity in arthropods, but very few DNA viruses have been described from the family Drosophilidae. This deficiency limits our opportunity to use natural host-pathogen combinations in experimental studies, and may bias our understanding of the Drosophila virome. Here, we report fourteen DNA viruses detected in a metagenomic analysis of 6668 pool-sequenced Drosophila, sampled from forty-seven European locations between 2014 and 2016. These include three new nudiviruses, a new and divergent entomopoxvirus, a virus related to Leptopilina boulardi filamentous virus, and a virus related to Musca domestica salivary gland hypertrophy virus. We also find an endogenous genomic copy of galbut virus, a double-stranded RNA partitivirus, segregating at very low frequency. Remarkably, we find that Drosophila Vesanto virus, a small DNA virus previously described as a bidnavirus, may be composed of up to twelve segments and thus represent a new lineage of segmented DNA viruses. Two of the DNA viruses, Drosophila Kallithea nudivirus and Drosophila Vesanto virus are relatively common, found in 2 per cent or more of wild flies. The others are rare, with many likely to be represented by a single infected fly. We find that virus prevalence in Europe reflects the prevalence seen in publicly available datasets, with Drosophila Kallithea nudivirus and Drosophila Vesanto virus the only ones commonly detectable in public data from wild-caught flies and large population cages, and the other viruses being rare or absent. These analyses suggest that DNA viruses are at lower prevalence than RNA viruses in D.melanogaster, and may be less likely to persist in laboratory cultures. Our findings go some way to redressing an earlier bias toward RNA virus studies in Drosophila, and lay the foundation needed to harness the power of Drosophila as a model system for the study of DNA viruses.

6.
Elife ; 102021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34279216

RESUMO

Over 100 years of studies in Drosophila melanogaster and related species in the genus Drosophila have facilitated key discoveries in genetics, genomics, and evolution. While high-quality genome assemblies exist for several species in this group, they only encompass a small fraction of the genus. Recent advances in long-read sequencing allow high-quality genome assemblies for tens or even hundreds of species to be efficiently generated. Here, we utilize Oxford Nanopore sequencing to build an open community resource of genome assemblies for 101 lines of 93 drosophilid species encompassing 14 species groups and 35 sub-groups. The genomes are highly contiguous and complete, with an average contig N50 of 10.5 Mb and greater than 97% BUSCO completeness in 97/101 assemblies. We show that Nanopore-based assemblies are highly accurate in coding regions, particularly with respect to coding insertions and deletions. These assemblies, along with a detailed laboratory protocol and assembly pipelines, are released as a public resource and will serve as a starting point for addressing broad questions of genetics, ecology, and evolution at the scale of hundreds of species.


Assuntos
Drosophila melanogaster/genética , Tamanho do Genoma , Genômica/métodos , Animais , Linhagem Celular , Cromossomos , Biologia Computacional/métodos , Feminino , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nanoporos
7.
J Neurosci Res ; 99(1): 407-418, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729199

RESUMO

Lithium is widely used to treat bipolar disorder. However, the efficacy and vulnerability as to its side effects are known to differ. Although the specific biochemical mechanism of action is still elusive, lithium may influence mitochondrial function, and consequently, metabolism. Lithium exposure in this study was conducted on a unique set of mito-nuclear introgression lines of Drosophila subobscura to disentangle the independent effects of mitochondrial DNA (mtDNA) against a common nuclear DNA background. The study addressed three issues: (a) whether lithium has a dose-dependent effect on whole-organism metabolic rate, (b) whether mtDNA haplotypes show divergent metabolic efficiency measured by metabolic rate to lithium exposure and (c) whether lithium influences the whole-organism metabolic rate across sexes. The results confirm that lithium influenced the whole-organism metabolic rate, showing a subtle balance between efficacy and adverse effects within a narrow dose range. In addition, lithium exposure was found to influence metabolism differently based on mtDNA haplotypes and sex. This preliminary research may have a range of biological implications for the role of mitochondrial variability in psychiatric disease and treatment by contributing to the understanding and predicting of the lithium treatment response and risk for toxic side effects.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Compostos de Lítio/toxicidade , Mitocôndrias/efeitos dos fármacos , Sulfatos/toxicidade , Animais , Drosophila , Feminino , Masculino
8.
Sci Rep ; 10(1): 20394, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230239

RESUMO

The Griffon vulture was once a widespread species across the region of Southeast Europe, but it is now endangered and in some parts is completely extinct. In the Balkan Peninsula the largest Griffon vulture inland population inhabits the territory of Serbia. We present, for the first time, the genetic data of this valuable population that could be a source for future reintroduction programs planned in South-eastern Europe. To characterize the genetic structure of this population we used microsatellite markers from ten loci. Blood samples were collected from 57 chicks directly in the nests during the ongoing monitoring program. We performed a comparative analysis of the obtained data with the existing data from three native populations from French Pyrenees, Croatia, and Israel. We have assessed the genetic differentiation between different native populations and determined the existence of two genetic clusters that differentiate the populations from the Balkan and Iberian Peninsulas. Furthermore, we analysed whether the recent bottleneck events influenced the genetic structure of the populations studied, and we found that all native populations experienced a recent bottleneck event, and that the population of Israel was the least affected. Nevertheless, the parameters of genetic diversity suggest that all analysed populations have retained a similar level of genetic diversity and that the Griffon vulture population from Serbia exhibits the highest value for private alleles. The results of this study suggest that the Griffon vulture populations of the Balkan Peninsula are genetically differentiated from the populations of the Iberian Peninsula, which is an important information for future reintroduction strategies.


Assuntos
Conservação dos Recursos Naturais , Falconiformes/genética , Deriva Genética , Variação Genética , Animais , Croácia , Falconiformes/classificação , Feminino , França , Loci Gênicos , Israel , Masculino , Repetições de Microssatélites , Filogeografia , Dinâmica Populacional/tendências , Sérvia
9.
BMC Evol Biol ; 20(1): 20, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019493

RESUMO

BACKGROUND: Understanding the forces that maintain diversity across a range of scales is at the very heart of biology. Frequency-dependent processes are generally recognized as the most central process for the maintenance of ecological diversity. The same is, however, not generally true for genetic diversity. Negative frequency dependent selection, where rare genotypes have an advantage, is often regarded as a relatively weak force in maintaining genetic variation in life history traits because recombination disassociates alleles across many genes. Yet, many regions of the genome show low rates of recombination and genetic variation in such regions (i.e., supergenes) may in theory be upheld by frequency dependent selection. RESULTS: We studied what is essentially a ubiquitous life history supergene (i.e., mitochondrial DNA) in the fruit fly Drosophila subobscura, showing sympatric polymorphism with two main mtDNA genotypes co-occurring in populations world-wide. Using an experimental evolution approach involving manipulations of genotype starting frequencies, we show that negative frequency dependent selection indeed acts to maintain genetic variation in this region. Moreover, the strength of selection was affected by food resource conditions. CONCLUSIONS: Our work provides novel experimental support for the view that balancing selection through negative frequency dependency acts to maintain genetic variation in life history genes. We suggest that the emergence of negative frequency dependent selection on mtDNA is symptomatic of the fundamental link between ecological processes related to resource use and the maintenance of genetic variation.


Assuntos
DNA Mitocondrial/genética , Polimorfismo Genético , Seleção Genética , Análise de Variância , Animais , Drosophila/genética , Feminino , Haplótipos/genética , Masculino , Fenótipo , Simpatria
10.
Plants (Basel) ; 8(7)2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31337143

RESUMO

Interspecific hybridization is one of the major actuators of evolutionary changes in plants. As the result of allopolyploid hybridization, offspring may gain different ploidy levels in comparison to parental species, which can provide them instant reproductive isolation. Two tetraploid sister species, Centaurium erythraea and C. littorale, readily cross-fertilize, resulting in hybrids of various ploidy. In northern Serbia, two stable populations of a hexaploid taxon C. pannonicum have been documented. It has been proposed previously that this taxon emerged after an interspecific hybridization event between two tetraploid sister-species: C. erythraea and C. littorale subsp. compressum. The existing populations of the hybridogenic taxon, as well as neighboring populations of the two parental taxa were here characterized by both morphometrics and molecular markers (EST-SSR and trnL-F). Three leaf and two flower characteristics were found to be informative in delimitation of the parental taxa and in their discernment from hybrid individuals, the latter having intermediate values. Eight microsatellite markers were found to have good ability to distinguish studied taxa, placing C. pannonicum in closer relationship with C. erythraea. Conversely, trnL-F plastid marker nominated C. littorale subsp. compressum to be the donor of the C. pannonicum plastid DNA. Reproductive isolation of the hexaploid hybrid individuals from the parental species should be examined as the next logical step in describing the new species.

11.
Insect Sci ; 24(1): 122-132, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26235310

RESUMO

According to current theoretical predictions, any deleterious mutations that reduce nonsexual fitness may have a negative influence on mating success. This means that sexual selection may remove deleterious mutations from the populations. Males of good genetic quality should be more successful in mating, compared to the males of lower genetic quality. As mating success is a condition dependent trait, large fractions of the genome may be a target of sexual selection and many behavioral traits are likely to be condition dependent. We manipulated the genetic quality of Drosophila subobscura males by inducing mutations with ionizing radiation and observed the effects of the obtained heterozygous mutations on male mating behavior: courtship occurrence, courtship latency, mating occurrence, latency to mating and duration of mating. We found possible effects of mutations. Females mated more frequently with male progeny of nonirradiated males and that these males courted females faster compared to the male progeny of irradiated males. Our findings indicate a possible important role of sexual selection in purging deleterious mutations.


Assuntos
Drosophila/fisiologia , Animais , Corte , Drosophila/genética , Drosophila/efeitos da radiação , Feminino , Raios gama , Aptidão Genética , Masculino , Mutação , Comportamento Sexual Animal
12.
BMC Evol Biol ; 15: 135, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26156582

RESUMO

BACKGROUND: A number of recent studies have shown that the pattern of mitochondrial DNA variation and evolution is at odds with a neutral equilibrium model. Theory has suggested that selection on mitonuclear genotypes can act to maintain stable mitonuclear polymorphism within populations. However, this effect largely relies upon selection being either sex-specific or frequency dependent. Here, we use mitonuclear introgression lines to assess differences in a series of key life-history traits (egg-to-adult developmental time, viability, offspring sex-ratio, adult longevity and resistance to desiccation) in Drosophila subobscura fruit flies carrying one of three different sympatric mtDNA haplotypes. RESULTS: We found functional differences between these sympatric mtDNA haplotypes, but these effects were contingent upon the nuclear genome with which they were co-expressed. Further, we demonstrate a significant mitonuclear genetic effect on adult sex ratio, as well as a sex × mtDNA × nuDNA interaction for adult longevity. CONCLUSIONS: The observed effects suggest that sex specific mitonuclear selection contributes to the maintenance of mtDNA polymorphism and to mitonuclear linkage disequilibrium in this model system.


Assuntos
Núcleo Celular/genética , Drosophila/citologia , Drosophila/genética , Mitocôndrias/genética , Polimorfismo Genético , Animais , DNA Mitocondrial/genética , Drosophila/classificação , Drosophila/fisiologia , Feminino , Desequilíbrio de Ligação , Masculino , Caracteres Sexuais , Simpatria
13.
Genome ; 55(3): 214-21, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22376001

RESUMO

The genetic structure of Drosophila subobscura from the Balkan Peninsula was studied with respect to restriction site polymorphism of mitochondrial DNA in populations from the Derventa River Gorge and Sicevo Gorge (Serbia). To investigate the role of cytonuclear interactions in shaping mitochondrial DNA variability in natural populations of this species, the study was complemented with the analysis of linkage disequilibria between mitochondrial haplotypes and chromosomal inversion arrangements. Similar to other populations of D. subobscura, two main haplotypes (I and II) were found, as well as a series of less common ones. The frequencies of haplotypes I and II accounted for 25.8% and 71.0%, respectively, in the population from the Derventa River Gorge, and for 32.4% and 58.1%, respectively, in the population from Sicevo Gorge. One of the haplotypes harbored a large insertion (2.7 kb) in the A+T rich region. The frequency distribution of both haplotypes did not depart from neutrality. Contrary to prior studies, we did not detect any significant linkage disequilibrium between the two most frequent mtDNA haplotypes and any of the chromosomal arrangements in either of the populations. We conclude that linkage disequilibrium is not a general occurrence in natural populations of D. subobscura, and we discuss how transient coadaptations, ecologically specific selective pressures, and demographics could contribute to population-specific patterns of linkage disequilibrium.


Assuntos
Cromossomos/genética , DNA Mitocondrial/genética , Drosophila/genética , Haplótipos/genética , Desequilíbrio de Ligação , Animais , Mapeamento por Restrição , Sérvia , Wolbachia/genética
14.
J Insect Sci ; 11: 113, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22224901

RESUMO

Interpopulation hybridization can lead to outbreeding depression within affected populations due to breakdown of coadapted gene complexes or heterosis in hybrid populations. One of the principal methods commonly used to estimate the level of developmental instability (DI) is fluctuating asymmetry (FA). We used three genetically differentiated Drosophila subobscura populations according to inversion polymorphism analysis and measured the variability of sternopleural bristle number and change in FA across generations P, F1, and F2 between intra- and interpopulation hybrids of D. subobscura. The mean variability of sternopleural bristle number in intra- and interpopulation hybrids of D. subobscura across generations cannot determine whether the changes at the level of developmental homeostasis are due exclusively to genomic coadaptation or to heterozygosity. Phenotypic variance (V(p)) and FA of sternopleural bristle number was higher in interpopulation than in intrapopulation hybrids across generations. F1 hybrids were more developmentally stable compared to each parental population in both intra- and interpopulation hybrids. The most probable mechanism providing developmental homeostasis is heterozygote or hybrid superiority, also called overdominace. However, V(p) was higher and FA lower in the F2 generation when compared to F1, due mainly to crossing-over in the formation of F2.


Assuntos
Inversão Cromossômica , Drosophila/crescimento & desenvolvimento , Hibridização Genética , Polimorfismo Genético , Adaptação Biológica , Animais , Drosophila/genética , Feminino , Heterozigoto , Homeostase , Masculino , Análise Multivariada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...