Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1281098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148945

RESUMO

Serial section multibeam scanning electron microscopy (ssmSEM) is currently among the fastest technologies available for acquiring 3D anatomical data spanning relatively large neural tissue volumes, on the order of 1 mm3 or larger, at a resolution sufficient to resolve the fine detail of neuronal morphologies and synapses. These petabyte-scale volumes can be analyzed to create connectomes, datasets that contain detailed anatomical information including synaptic connectivity, neuronal morphologies and distributions of cellular organelles. The mSEM acquisition process creates hundreds of millions of individual image tiles for a single cubic-millimeter-sized dataset and these tiles must be aligned to create 3D volumes. Here we introduce msemalign, an alignment pipeline that strives for scalability and design simplicity. The pipeline can align petabyte-scale datasets such that they contain smooth transitions as the dataset is navigated in all directions, but critically that does so in a fashion that minimizes the overall magnitude of section distortions relative to the originally acquired micrographs.

2.
Mol Microbiol ; 119(6): 659-676, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066636

RESUMO

Bacteria often grow into matrix-encased three-dimensional (3D) biofilm communities, which can be imaged at cellular resolution using confocal microscopy. From these 3D images, measurements of single-cell properties with high spatiotemporal resolution are required to investigate cellular heterogeneity and dynamical processes inside biofilms. However, the required measurements rely on the automated segmentation of bacterial cells in 3D images, which is a technical challenge. To improve the accuracy of single-cell segmentation in 3D biofilms, we first evaluated recent classical and deep learning segmentation algorithms. We then extended StarDist, a state-of-the-art deep learning algorithm, by optimizing the post-processing for bacteria, which resulted in the most accurate segmentation results for biofilms among all investigated algorithms. To generate the large 3D training dataset required for deep learning, we developed an iterative process of automated segmentation followed by semi-manual correction, resulting in >18,000 annotated Vibrio cholerae cells in 3D images. We demonstrate that this large training dataset and the neural network with optimized post-processing yield accurate segmentation results for biofilms of different species and on biofilm images from different microscopes. Finally, we used the accurate single-cell segmentation results to track cell lineages in biofilms and to perform spatiotemporal measurements of single-cell growth rates during biofilm development.


Assuntos
Aprendizado Profundo , Linhagem da Célula , Imageamento Tridimensional/métodos , Algoritmos , Biofilmes , Bactérias , Processamento de Imagem Assistida por Computador/métodos
3.
PLoS Biol ; 20(10): e3001846, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36288405

RESUMO

Bacterial biofilms are among the most abundant multicellular structures on Earth and play essential roles in a wide range of ecological, medical, and industrial processes. However, general principles that govern the emergence of biofilm architecture across different species remain unknown. Here, we combine experiments, simulations, and statistical analysis to identify shared biophysical mechanisms that determine early biofilm architecture development at the single-cell level, for the species Vibrio cholerae, Escherichia coli, Salmonella enterica, and Pseudomonas aeruginosa grown as microcolonies in flow chambers. Our data-driven analysis reveals that despite the many molecular differences between these species, the biofilm architecture differences can be described by only 2 control parameters: cellular aspect ratio and cell density. Further experiments using single-species mutants for which the cell aspect ratio and the cell density are systematically varied, and mechanistic simulations show that tuning these 2 control parameters reproduces biofilm architectures of different species. Altogether, our results show that biofilm microcolony architecture is determined by mechanical cell-cell interactions, which are conserved across different species.


Assuntos
Biofilmes , Vibrio cholerae , Pseudomonas aeruginosa/genética , Vibrio cholerae/genética , Escherichia coli/genética
4.
Elife ; 102021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34751128

RESUMO

Bacteria commonly live in spatially structured biofilm assemblages, which are encased by an extracellular matrix. Metabolic activity of the cells inside biofilms causes gradients in local environmental conditions, which leads to the emergence of physiologically differentiated subpopulations. Information about the properties and spatial arrangement of such metabolic subpopulations, as well as their interaction strength and interaction length scales are lacking, even for model systems like Escherichia coli colony biofilms grown on agar-solidified media. Here, we use an unbiased approach, based on temporal and spatial transcriptome and metabolome data acquired during E. coli colony biofilm growth, to study the spatial organization of metabolism. We discovered that alanine displays a unique pattern among amino acids and that alanine metabolism is spatially and temporally heterogeneous. At the anoxic base of the colony, where carbon and nitrogen sources are abundant, cells secrete alanine via the transporter AlaE. In contrast, cells utilize alanine as a carbon and nitrogen source in the oxic nutrient-deprived region at the colony mid-height, via the enzymes DadA and DadX. This spatially structured alanine cross-feeding influences cellular viability and growth in the cross-feeding-dependent region, which shapes the overall colony morphology. More generally, our results on this precisely controllable biofilm model system demonstrate a remarkable spatiotemporal complexity of metabolism in biofilms. A better characterization of the spatiotemporal metabolic heterogeneities and dependencies is essential for understanding the physiology, architecture, and function of biofilms.


Assuntos
Alanina/metabolismo , Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Metaboloma , Transcriptoma , Escherichia coli/crescimento & desenvolvimento , Análise Espacial
5.
Phys Rev Lett ; 126(4): 048101, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33576647

RESUMO

Recent advances in microscopy techniques make it possible to study the growth, dynamics, and response of complex biophysical systems at single-cell resolution, from bacterial communities to tissues and organoids. In contrast to ordered crystals, it is less obvious how one can reliably distinguish two amorphous yet structurally different cellular materials. Here, we introduce a topological earth mover's (TEM) distance between disordered structures that compares local graph neighborhoods of the microscopic cell-centroid networks. Leveraging structural information contained in the neighborhood motif distributions, the TEM metric allows an interpretable reconstruction of equilibrium and nonequilibrium phase spaces and embedded pathways from static system snapshots alone. Applied to cell-resolution imaging data, the framework recovers time ordering without prior knowledge about the underlying dynamics, revealing that fly wing development solves a topological optimal transport problem. Extending our topological analysis to bacterial swarms, we find a universal neighborhood size distribution consistent with a Tracy-Widom law.


Assuntos
Modelos Teóricos , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Animais , Fenômenos Biofísicos , Coloides/química , Microscopia Crioeletrônica , Drosophila , Entropia , Células Epiteliais/citologia , Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Modelos Químicos , RNA/química
7.
Nat Microbiol ; 6(2): 151-156, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33398098

RESUMO

Biofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ-a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.


Assuntos
Biofilmes , Citometria por Imagem/métodos , Imageamento Tridimensional/métodos , Microbiota , Software , Bactérias/citologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Análise Espaço-Temporal
8.
Elife ; 92020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286952

RESUMO

Microorganisms have evolved specific cell surface molecules that enable discrimination between cells from the same and from a different kind. Here, we investigate the role of Flo11-type cell surface adhesins from social yeasts in kin discrimination. We measure the adhesion forces mediated by Flo11A-type domains using single-cell force spectroscopy, quantify Flo11A-based cell aggregation in populations and determine the Flo11A-dependent segregation of competing yeast strains in biofilms. We find that Flo11A domains from diverse yeast species confer remarkably strong adhesion forces by establishing homotypic interactions between single cells, leading to efficient cell aggregation and biofilm formation in homogenous populations. Heterotypic interactions between Flo11A domains from different yeast species or Saccharomyces cerevisiae strains confer weak adhesive forces and lead to efficient strain segregation in heterogenous populations, indicating that in social yeasts Flo11A-mediated cell adhesion is a major mechanism for kin discrimination at species and sub-species levels. These findings, together with our structure and mutation analysis of selected Flo11A domains, provide a rationale of how cell surface receptors have evolved in microorganisms to mediate kin discrimination.


Assuntos
Adesão Celular/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Biofilmes , Comunicação Celular/fisiologia
9.
Proc Natl Acad Sci U S A ; 116(5): 1489-1494, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30635422

RESUMO

Coordinated dynamics of individual components in active matter are an essential aspect of life on all scales. Establishing a comprehensive, causal connection between intracellular, intercellular, and macroscopic behaviors has remained a major challenge due to limitations in data acquisition and analysis techniques suitable for multiscale dynamics. Here, we combine a high-throughput adaptive microscopy approach with machine learning, to identify key biological and physical mechanisms that determine distinct microscopic and macroscopic collective behavior phases which develop as Bacillus subtilis swarms expand over five orders of magnitude in space. Our experiments, continuum modeling, and particle-based simulations reveal that macroscopic swarm expansion is primarily driven by cellular growth kinetics, whereas the microscopic swarming motility phases are dominated by physical cell-cell interactions. These results provide a unified understanding of bacterial multiscale behavioral complexity in swarms.


Assuntos
Bacillus subtilis/fisiologia , Movimento/fisiologia , Comunicação Celular/fisiologia , Proliferação de Células/fisiologia , Cinética , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...