Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(13): 133002, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36206434

RESUMO

We present the experimental observation of two-center interference in the ionization time delays of Kr_{2}. Using attosecond electron-ion-coincidence spectroscopy, we simultaneously measure the photoionization delays of krypton monomer and dimer. The relative time delay is found to oscillate as a function of the electron kinetic energy, an effect that is traced back to constructive and destructive interference of the photoelectron wave packets that are emitted or scattered from the two atomic centers. Our interpretation of the experimental results is supported by solving the time-independent Schrödinger equation of a 1D double-well potential, as well as coupled-channel multiconfigurational quantum-scattering calculations of Kr_{2}. This work opens the door to the study of a broad class of quantum-interference effects in photoionization delays and demonstrates the potential of attosecond coincidence spectroscopy for studying weakly bound systems.

2.
Nature ; 609(7927): 507-511, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35820616

RESUMO

Electron dynamics in water are of fundamental importance for a broad range of phenomena1-3, but their real-time study faces numerous conceptual and methodological challenges4-6. Here we introduce attosecond size-resolved cluster spectroscopy and build up a molecular-level understanding of the attosecond electron dynamics in water. We measure the effect that the addition of single water molecules has on the photoionization time delays7-9 of water clusters. We find a continuous increase of the delay for clusters containing up to four to five molecules and little change towards larger clusters. We show that these delays are proportional to the spatial extension of the created electron hole, which first increases with cluster size and then partially localizes through the onset of structural disorder that is characteristic of large clusters and bulk liquid water. These results indicate a previously unknown sensitivity of photoionization delays to electron-hole delocalization and indicate a direct link between electronic structure and attosecond photoionization dynamics. Our results offer new perspectives for studying electron-hole delocalization and its attosecond dynamics.

3.
Chimia (Aarau) ; 76(6): 520-528, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069721

RESUMO

Photoionization is a process taking place on attosecond time scales. How its properties evolve from isolated particles to the condensed phase is an open question of both fundamental and practical relevance. Here, we review recent work that has advanced the study of photoionization dynamics from atoms to molecules, clusters and the liquid phase. The first measurements of molecular photoionization delays have revealed the attosecond dynamics of electron emission from a molecular shape resonance and their sensitivity to the molecular potential. Using electron-ion coincidence spectroscopy these measurements have been extended from isolated molecules to clusters. A continuous increase of the delays with the water-cluster size has been observed up to a size of 4-5 molecules, followed by a saturation towards larger clusters. Comparison with calculations has revealed a correlation of the time delay with the spatial extension of the created electron hole. Using cylindrical liquid-microjet techniques, these measurements have also been extended to liquid water, revealing a delay relative to isolated water molecules that was very similar to the largest water clusters studied. Detailed modeling based on Monte-Carlo simulations confirmed that these delays are dominated by the contributions of the first two solvation shells, which agrees with the results of the cluster measurements. These combined results open the perspective of experimentally characterizing the delocalization of electronic wave functions in complex systems and studying their evolution on attosecond time scales.

4.
Science ; 369(6506): 974-979, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820124

RESUMO

Electronic dynamics in liquids are of fundamental importance, but time-resolved experiments have so far remained limited to the femtosecond time scale. We report the extension of attosecond spectroscopy to the liquid phase. We measured time delays of 50 to 70 attoseconds between the photoemission from liquid water and that from gaseous water at photon energies of 21.7 to 31.0 electron volts. These photoemission delays can be decomposed into a photoionization delay sensitive to the local environment and a delay originating from electron transport. In our experiments, the latter contribution is shown to be negligible. By referencing liquid water to gaseous water, we isolated the effect of solvation on the attosecond photoionization dynamics of water molecules. Our methods define an approach to separating bound and unbound electron dynamics from the structural response of the solvent.

5.
Sci Adv ; 4(8): eaat3962, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30151427

RESUMO

Autoionizing resonances are paradigmatic examples of two-path wave interferences between direct photoionization, which takes a few attoseconds, and ionization via quasi-bound states, which takes much longer. Time-resolving the evolution of these interferences has been a long-standing goal, achieved recently in the helium atom owing to progress in attosecond technologies. However, already for the hydrogen molecule, similar time imaging has remained beyond reach due to the complex interplay between fast nuclear and electronic motions. We show how vibrationally resolved photoelectron spectra of H2 allow one to reconstruct the associated subfemtosecond autoionization dynamics by using the ultrafast nuclear dynamics as an internal clock, thus forgoing ultrashort pulses. Our procedure should be general for autoionization dynamics in molecules containing light nuclei, which are ubiquitous in chemistry and biology.

6.
Nanoscale ; 6(22): 13555-64, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25269097

RESUMO

Efficient excitation of Fano resonances in plasmonic systems usually requires complex nano-structure geometries and some degree of symmetry breaking. However, a single-layered concentric core-shell particle presents inherent Fano profiles in the scattering spectra when sphere and cavity modes spectrally overlap. Weak hybridization and suitable choice of core and shell materials gives rise to strong electric dipolar Fano resonances in these systems and retardation effects can result in resonances of higher multipolar order or of magnetic type. Furthermore, suitable tailoring of illumination conditions leads to an enhancement of the Fano resonance by quenching of unwanted electromagnetic modes. Overall, it is shown that single layered core-shell particles can act as robust Fano resonators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...