Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6014, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019889

RESUMO

Phenotypic heterogeneity in bacteria can result from stochastic processes or deterministic programs. The deterministic programs often involve the versatile second messenger c-di-GMP, and give rise to daughter cells with different c-di-GMP levels by deploying c-di-GMP metabolizing enzymes asymmetrically during cell division. By contrast, less is known about how phenotypic heterogeneity is kept to a minimum. Here, we identify a deterministic c-di-GMP-dependent program that is hardwired into the cell cycle of Myxococcus xanthus to minimize phenotypic heterogeneity and guarantee the formation of phenotypically similar daughter cells during division. Cells lacking the diguanylate cyclase DmxA have an aberrant motility behaviour. DmxA is recruited to the cell division site and its activity is switched on during cytokinesis, resulting in a transient increase in the c-di-GMP concentration. During cytokinesis, this c-di-GMP burst ensures the symmetric incorporation and allocation of structural motility proteins and motility regulators at the new cell poles of the two daughters, thereby generating phenotypically similar daughters with correct motility behaviours. Thus, our findings suggest a general c-di-GMP-dependent mechanism for minimizing phenotypic heterogeneity, and demonstrate that bacteria can ensure the formation of dissimilar or similar daughter cells by deploying c-di-GMP metabolizing enzymes to distinct subcellular locations.


Assuntos
Proteínas de Bactérias , GMP Cíclico , Citocinese , Myxococcus xanthus , Fenótipo , Fósforo-Oxigênio Liases , Citocinese/fisiologia , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fósforo-Oxigênio Liases/metabolismo , Fósforo-Oxigênio Liases/genética , Myxococcus xanthus/metabolismo , Myxococcus xanthus/citologia , Myxococcus xanthus/fisiologia , Myxococcus xanthus/genética , Divisão Celular , Regulação Bacteriana da Expressão Gênica , Proteínas de Escherichia coli
2.
Nat Microbiol ; 9(7): 1725-1737, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38858595

RESUMO

Pseudomonas aeruginosa, a leading cause of severe hospital-acquired pneumonia, causes infections with up to 50% mortality rates in mechanically ventilated patients. Despite some knowledge of virulence factors involved, it remains unclear how P. aeruginosa disseminates on mucosal surfaces and invades the tissue barrier. Using infection of human respiratory epithelium organoids, here we observed that P. aeruginosa colonization of apical surfaces is promoted by cyclic di-GMP-dependent asymmetric division. Infection with mutant strains revealed that Type 6 Secretion System activities promote preferential invasion of goblet cells. Type 3 Secretion System activity by intracellular bacteria induced goblet cell death and expulsion, leading to epithelial rupture which increased bacterial translocation and dissemination to the basolateral epithelium. These findings show that under physiological conditions, P. aeruginosa uses coordinated activity of a specific combination of virulence factors and behaviours to invade goblet cells and breach the epithelial barrier from within, revealing mechanistic insight into lung infection dynamics.


Assuntos
Células Caliciformes , Infecções por Pseudomonas , Pseudomonas aeruginosa , Mucosa Respiratória , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Células Caliciformes/microbiologia , Células Caliciformes/metabolismo , Humanos , Mucosa Respiratória/microbiologia , Mucosa Respiratória/citologia , Infecções por Pseudomonas/microbiologia , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo III/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Organoides/microbiologia , Translocação Bacteriana
3.
Nat Commun ; 15(1): 3920, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724508

RESUMO

Monitoring changes of signaling molecules and metabolites with high temporal resolution is key to understanding dynamic biological systems. Here, we use directed evolution to develop a genetically encoded ratiometric biosensor for c-di-GMP, a ubiquitous bacterial second messenger regulating important biological processes like motility, surface attachment, virulence and persistence. The resulting biosensor, cdGreen2, faithfully tracks c-di-GMP in single cells and with high temporal resolution over extended imaging times, making it possible to resolve regulatory networks driving bimodal developmental programs in different bacterial model organisms. We further adopt cdGreen2 as a simple tool for in vitro studies, facilitating high-throughput screens for compounds interfering with c-di-GMP signaling and biofilm formation. The sensitivity and versatility of cdGreen2 could help reveal c-di-GMP dynamics in a broad range of microorganisms with high temporal resolution. Its design principles could also serve as a blueprint for the development of similar, orthogonal biosensors for other signaling molecules, metabolites and antibiotics.


Assuntos
Biofilmes , Técnicas Biossensoriais , GMP Cíclico , Técnicas Biossensoriais/métodos , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Biofilmes/crescimento & desenvolvimento , Transdução de Sinais , Escherichia coli/metabolismo , Escherichia coli/genética , Sistemas do Segundo Mensageiro
4.
Microbiol Resour Announc ; 13(4): e0117423, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38393330

RESUMO

Bacteriophage Knedl is the first reported Pseudomonas aeruginosa phage that targets the Psl exopolysaccharide as receptor. Here, we report the genome of Knedl, demonstrating that it belongs to the genus Iggyvirus of the Queuovirinae subfamily. Future studies on the infection mechanism of Knedl could inform phage-based approaches to eradicate biofilms.

6.
Nat Commun ; 15(1): 175, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168031

RESUMO

Bacteriophages are ubiquitous viral predators that have primarily been studied using fast-growing laboratory cultures of their bacterial hosts. However, microbial life in nature is mostly in a slow- or non-growing, dormant state. Here, we show that diverse phages can infect deep-dormant bacteria and suspend their replication until the host resuscitates ("hibernation"). However, a newly isolated Pseudomonas aeruginosa phage, named Paride, can directly replicate and induce the lysis of deep-dormant hosts. While non-growing bacteria are notoriously tolerant to antibiotic drugs, the combination with Paride enables the carbapenem meropenem to eradicate deep-dormant cultures in vitro and to reduce a resilient bacterial infection of a tissue cage implant in mice. Our work might inspire new treatments for persistent bacterial infections and, more broadly, highlights two viral strategies to infect dormant bacteria (hibernation and direct replication) that will guide future studies on phage-host interactions.


Assuntos
Bacteriófagos , Infecções por Pseudomonas , Animais , Camundongos , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Infecções por Pseudomonas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA