Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38675862

RESUMO

Rabbit haemorrhage disease virus 2 (RHDV2) is a highly pathogenic lagovirus that causes lethal disease in rabbits and hares (lagomorphs). Since its first detection in Europe in 2010, RHDV2 has spread worldwide and has been detected in over 35 countries so far. Here, we provide the first detailed report of the detection and subsequent circulation of RHDV2 in New Zealand. RHDV2 was first detected in New Zealand in 2018, with positive samples retrospectively identified in December 2017. Subsequent time-resolved phylogenetic analysis suggested a single introduction into the North Island between March and November 2016. Genetic analysis identified a GI.3P-GI.2 variant supporting a non-Australian origin for the incursion; however, more accurate identification of the source of the incursion remains challenging due to the wide global distribution of the GI.3P-GI.2 variant. Furthermore, our analysis suggests the spread of the virus between the North and South Islands of New Zealand at least twice, dated to mid-2017 and around 2018. Further phylogenetic analysis also revealed a strong phylogeographic pattern. So far, no recombination events with endemic benign New Zealand rabbit caliciviruses have been identified. This study highlights the need for further research and surveillance to monitor the distribution and diversity of lagoviruses in New Zealand and to detect incursions of novel variants.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Filogenia , Nova Zelândia/epidemiologia , Animais , Vírus da Doença Hemorrágica de Coelhos/genética , Vírus da Doença Hemorrágica de Coelhos/isolamento & purificação , Vírus da Doença Hemorrágica de Coelhos/classificação , Coelhos/virologia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Filogeografia , Lebres/virologia , Estudos Retrospectivos , Genoma Viral
2.
Viruses ; 16(3)2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543804

RESUMO

Pathogenic lagoviruses (Rabbit hemorrhagic disease virus, RHDV) are widely spread across the world and are used in Australia and New Zealand to control populations of feral European rabbits. The spread of the non-pathogenic lagoviruses, e.g., rabbit calicivirus (RCV), is less well studied as the infection results in no clinical signs. Nonetheless, RCV has important implications for the spread of RHDV and rabbit biocontrol as it can provide varying levels of cross-protection against fatal infection with pathogenic lagoviruses. In Chile, where European rabbits are also an introduced species, myxoma virus was used for localised biocontrol of rabbits in the 1950s. To date, there have been no studies investigating the presence of lagoviruses in the Chilean feral rabbit population. In this study, liver and duodenum rabbit samples from central Chile were tested for the presence of lagoviruses and positive samples were subject to whole RNA sequencing and subsequent data analysis. Phylogenetic analysis revealed a novel RCV variant in duodenal samples that likely originated from European RCVs. Sequencing analysis also detected the presence of a rabbit astrovirus in one of the lagovirus-positive samples.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Lagovirus , Animais , Coelhos , Filogenia , Chile , Infecções por Caliciviridae/epidemiologia , Vírus da Doença Hemorrágica de Coelhos/genética
3.
Viruses ; 15(12)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38140589

RESUMO

Australia has multiple lagoviruses with differing pathogenicity. The circulation of these viruses was traditionally determined through opportunistic sampling events. In the lead up to the nationwide release of RHDVa-K5 (GI.1aP-GI.1a) in 2017, an existing citizen science program, RabbitScan, was augmented to allow members of the public to submit samples collected from dead leporids for lagovirus testing. This study describes the information obtained from the increased number of leporid samples received between 2015 and 2022 and focuses on the recent epidemiological interactions and evolutionary trajectory of circulating lagoviruses in Australia between October 2020 and December 2022. A total of 2771 samples were tested from January 2015 to December 2022, of which 1643 were lagovirus-positive. Notable changes in the distribution of lagovirus variants were observed, predominantly in Western Australia, where RHDV2-4c (GI.4cP-GI.2) was detected again in 2021 after initially being reported to be present in 2018. Interestingly, we found evidence that the deliberately released RHDVa-K5 was able to establish and circulate in wild rabbit populations in WA. Overall, the incorporation of citizen science approaches proved to be a cost-efficient method to increase the sampling area and enable an in-depth analysis of lagovirus distribution, genetic diversity, and interactions. The maintenance of such programs is essential to enable continued investigations of the critical parameters affecting the biocontrol of feral rabbit populations in Australia, as well as to enable the detection of any potential future incursions.


Assuntos
Infecções por Caliciviridae , Ciência do Cidadão , Vírus da Doença Hemorrágica de Coelhos , Lagovirus , Animais , Coelhos , Vírus da Doença Hemorrágica de Coelhos/genética , Epidemiologia Molecular , Lagovirus/genética , Filogenia , Austrália/epidemiologia
4.
J Gen Virol ; 104(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37584657

RESUMO

The genus Lagovirus of the family Caliciviridae contains some of the most virulent vertebrate viruses known. Lagoviruses infect leporids, such as rabbits, hares and cottontails. Highly pathogenic viruses such as Rabbit haemorrhagic disease virus 1 (RHDV1) cause a fulminant hepatitis that typically leads to disseminated intravascular coagulation within 24-72 h of infection, killing over 95 % of susceptible animals. Research into the pathophysiological mechanisms that are responsible for this extreme phenotype has been hampered by the lack of a reliable culture system. Here, we report on a new ex vivo model for the cultivation of lagoviruses in cells derived from the European rabbit (Oryctolagus cuniculus) and European brown hare (Lepus europaeus). We show that three different lagoviruses, RHDV1, RHDV2 and RHDVa-K5, replicate in monolayer cultures derived from rabbit hepatobiliary organoids, but not in monolayer cultures derived from cat (Felis catus) or mouse (Mus musculus) organoids. Virus multiplication was demonstrated by (i) an increase in viral RNA levels, (ii) the accumulation of dsRNA viral replication intermediates and (iii) the expression of viral structural and non-structural proteins. The establishment of an organoid culture system for lagoviruses will facilitate studies with considerable implications for the conservation of endangered leporid species in Europe and North America, and the biocontrol of overabundant rabbit populations in Australia and New Zealand.


Assuntos
Infecções por Caliciviridae , Lebres , Vírus da Doença Hemorrágica de Coelhos , Lagovirus , Animais , Gatos , Camundongos , Coelhos , Filogenia , Vírus da Doença Hemorrágica de Coelhos/genética , Lagovirus/genética , Organoides
5.
Front Microbiol ; 13: 923256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923397

RESUMO

The exact function(s) of the lagovirus non-structural protein p23 is unknown as robust cell culture systems for the Rabbit haemorrhagic disease virus (RHDV) and other lagoviruses have not been established. Instead, a range of in vitro and in silico models have been used to study p23, revealing that p23 oligomerizes, accumulates in the cytoplasm, and possesses a conserved C-terminal region with two amphipathic helices. Furthermore, the positional homologs of p23 in other caliciviruses have been shown to possess viroporin activity. Here, we report on the mechanistic details of p23 oligomerization. Site-directed mutagenesis revealed the importance of an N-terminal cysteine for dimerization. Furthermore, we identified cellular interactors of p23 using stable isotope labeling with amino acids in cell culture (SILAC)-based proteomics; heat shock proteins Hsp70 and 110 interact with p23 in transfected cells, suggesting that they 'chaperone' p23 proteins before their integration into cellular membranes. We investigated changes to the global transcriptome and proteome that occurred in infected rabbit liver tissue and observed changes to the misfolded protein response, calcium signaling, and the regulation of the endoplasmic reticulum (ER) network. Finally, flow cytometry studies indicate slightly elevated calcium concentrations in the cytoplasm of p23-transfected cells. Taken together, accumulating evidence suggests that p23 is a viroporin that might form calcium-conducting channels in the ER membranes.

6.
Transbound Emerg Dis ; 69(5): e2629-e2640, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35687756

RESUMO

Australia is known for its long history of using biocontrol agents, such as myxoma virus (MYXV) and rabbit haemorrhagic disease virus (RHDV), to manage wild European rabbit populations. Interestingly, while undertaking RHDV surveillance of rabbits that were found dead, we observed that approximately 40% of samples were negative for RHDV. To investigate whether other infectious agents are responsible for killing rabbits in Australia, we subjected a subset of these RHDV-negative liver samples to metatranscriptomic sequencing. In addition, we investigated whether the host transcriptome data could provide additional differentiation between likely infectious versus non-infectious causes of death. We identified transcripts from several Clostridia species, Pasteurella multocida, Pseudomonas spp., and Eimeria stiedae, in liver samples of several rabbits that had died suddenly, all of which are known to infect rabbits and are capable of causing disease and mortality. In addition, we identified Hepatitis E virus and Cyniclomyces yeast in some samples, both of which are not usually associated with severe disease. In one-third of the sequenced total liver RNAs, no infectious agent could be identified. While metatranscriptomic sequencing cannot provide definitive evidence of causation, additional host transcriptome analysis provided further insights to distinguish between pathogenic microbes and commensals or environmental contaminants. Interestingly, three samples where no pathogen could be identified showed evidence of up-regulated host immune responses, while immune response pathways were not up-regulated when E. stiedae, Pseudomonas, or yeast were detected. In summary, although no new putative rabbit pathogens were identified, this study provides a robust workflow for future investigations into rabbit mortality events.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Myxoma virus , Animais , Austrália/epidemiologia , Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/genética , Coelhos , Saccharomyces cerevisiae
7.
Pathogens ; 10(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34959591

RESUMO

In 2020, Hepatitis E virus (HEV) was detected for the first time in Australian rabbits. To improve our understanding of the genetic diversity and distribution of the virus, 1635 rabbit liver samples from locations across Australia were screened via RT-qPCR for HEV. HEV genomes were amplified and sequenced from 48 positive samples. Furthermore, we tested 380 serum samples from 11 locations across Australia for antibodies against HEV. HEV was detected in rabbits from all states and territories, except the Northern Territory. Seroprevalence varied between locations (from 0% to 22%), demonstrating that HEV is widely distributed in rabbit populations across Australia. Phylogenetic analyses showed that Australian HEV sequences are genetically diverse and that HEV was likely introduced into Australia independently on several occasions. In summary, this study broadens our understanding of the genetic diversity of rabbit HEV globally and shows that the virus is endemic in both domestic and wild rabbit populations in Australia.

8.
Virus Evol ; 7(2): veab080, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754513

RESUMO

The diversity of lagoviruses (Caliciviridae) in Australia has increased considerably in recent years. By the end of 2017, five variants from three viral genotypes were present in populations of Australian rabbits, while prior to 2014 only two variants were known. To understand the evolutionary interactions among these lagovirus variants, we monitored their geographical distribution and relative incidence over time in a continental-scale competition study. Within 3 years of the incursion of rabbit haemorrhagic disease virus 2 (RHDV2, denoted genotype GI.1bP-GI.2 [polymerase genotype]P-[capsid genotype]) into Australia, two novel recombinant lagovirus variants emerged: RHDV2-4e (genotype GI.4eP-GI.2) in New South Wales and RHDV2-4c (genotype GI.4cP-GI.2) in Victoria. Although both novel recombinants contain non-structural genes related to those from benign, rabbit-specific, enterotropic viruses, these variants were recovered from the livers of both rabbits and hares that had died acutely. This suggests that the determinants of host and tissue tropism for lagoviruses are associated with the structural genes, and that tropism is intricately connected with pathogenicity. Phylogenetic analyses demonstrated that the RHDV2-4c recombinant emerged independently on multiple occasions, with five distinct lineages observed. Both the new RHDV2-4e and -4c recombinant variants replaced the previous dominant parental RHDV2 (genotype GI.1bP-GI.2) in their respective geographical areas, despite sharing an identical or near-identical (i.e. single amino acid change) VP60 major capsid protein with the parental virus. This suggests that the observed replacement by these recombinants was not driven by antigenic variation in VP60, implicating the non-structural genes as key drivers of epidemiological fitness. Molecular clock estimates place the RHDV2-4e recombination event in early to mid-2015, while the five RHDV2-4c recombination events occurred from late 2015 through to early 2017. The emergence of at least six viable recombinant variants within a 2-year period highlights the high frequency of these events, detectable only through intensive surveillance, and demonstrates the importance of recombination in lagovirus evolution.

9.
Virol J ; 17(1): 6, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31952524

RESUMO

BACKGROUND: Pneumonia and stomatitis represent severe and often fatal diseases in different captive snakes. Apart from bacterial infections, paramyxo-, adeno-, reo- and arenaviruses cause these diseases. In 2014, new viruses emerged as the cause of pneumonia in pythons. In a few publications, nidoviruses have been reported in association with pneumonia in ball pythons and a tiger python. The viruses were found using new sequencing methods from the organ tissue of dead animals. METHODS: Severe pneumonia and stomatitis resulted in a high mortality rate in a captive breeding collection of green tree pythons. Unbiased deep sequencing lead to the detection of nidoviral sequences. A developed RT-qPCR was used to confirm the metagenome results and to determine the importance of this virus. A total of 1554 different boid snakes, including animals suffering from respiratory diseases as well as healthy controls, were screened for nidoviruses. Furthermore, in addition to two full-length sequences, partial sequences were generated from different snake species. RESULTS: The assembled full-length snake nidovirus genomes share only an overall genome sequence identity of less than 66.9% to other published snake nidoviruses and new partial sequences vary between 99.89 and 79.4%. Highest viral loads were detected in lung samples. The snake nidovirus was not only present in diseased animals, but also in snakes showing no typical clinical signs. CONCLUSIONS: Our findings further highlight the possible importance of snake nidoviruses in respiratory diseases and proof multiple circulating strains with varying disease potential. Nidovirus detection in clinical healthy individuals might represent testing during the incubation period or reconvalescence. Our investigations show new aspects of nidovirus infections in pythons. Nidoviruses should be included in routine diagnostic workup of diseased reptiles.


Assuntos
Boidae/virologia , Infecções por Nidovirales/veterinária , Nidovirales , Animais , Doenças Transmissíveis Emergentes/veterinária , Doenças Transmissíveis Emergentes/virologia , Metagenômica , Nidovirales/genética , Nidovirales/isolamento & purificação , Filogenia , Pneumonia/veterinária , Pneumonia/virologia , RNA Viral/genética , Estomatite/veterinária , Estomatite/virologia
10.
Transbound Emerg Dis ; 67(1): 171-182, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31469936

RESUMO

Bluetongue virus (Reoviridae; Orbivirus, BTV), which is usually transmitted by biting midges, affects wild and domestic ruminants worldwide, thereby causing an economically important disease. Recently, a putative new BTV strain was isolated from contaminated vaccine batches. In this study, we investigated the genomic and clinical characteristics of this isolate, provisionally designated BTV-28. Phylogenetic analysis of BTV-28 segment 2 (Seg-2) showed that it is related to Seg-2 from BTV serotypes 4, 10, 11, 17, 20 and 24, sharing 64%-66% identity in nucleotide sequences (nt) and 59%-62% in amino acid (aa) sequences of BTV VP2. BTV-28 Seg-6 is related to the newly reported XJ1407 BTV isolate, sharing 76.70% nt and 90.87% aa sequence identity. Seg-5 was most closely related to a South African BTV-4 strain, and all other segments showed close similarity to BTV-26. Experimental infection by injection of 6-month-old ewes caused clinical signs in all injected animals, lasting from 2 to 3 days to several weeks post-infection, including high body temperature, conjunctivitis, nasal discharge and rhinitis, facial oedema, oral hyperaemia, coronitis, cough, depression and tongue cyanosis. Naïve control animals, placed together with the infected sheep, displayed clinical signs and were positive for viral RNA, but their acute disease phase was shorter than that of BTV-injected ewes. Control animals that were kept in a separated pen did not display any clinical signs and were negative for viral RNA presence throughout the experiment. Seroconversion was observed in the injected and in one of the two contact-infected animals. These findings demonstrate that BTV-28 infection of sheep can result in clinical manifestation, and the clinical signs detected in the contact animals suggest that it might be directly transmitted between the mammalian hosts.


Assuntos
Vírus Bluetongue/imunologia , Bluetongue/virologia , Capripoxvirus/imunologia , Ceratopogonidae/virologia , Infecções por Poxviridae/veterinária , Doenças dos Ovinos/virologia , Vacinas Virais , Animais , Bluetongue/transmissão , Vírus Bluetongue/isolamento & purificação , Feminino , Filogenia , Infecções por Poxviridae/prevenção & controle , Infecções por Poxviridae/virologia , RNA Viral/genética , Sorogrupo , Ovinos , Doenças dos Ovinos/transmissão
11.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31645446

RESUMO

Cowpox virus (CPXV) is a zoonotic orthopoxvirus (OPV) that causes spillover infections from its animal hosts to humans. In 2009, several human CPXV cases occurred through transmission from pet rats. An isolate from a diseased rat, RatPox09, exhibited significantly increased virulence in Wistar rats and caused high mortality compared to that caused by the mildly virulent laboratory strain Brighton Red (BR). The RatPox09 genome encodes four genes which are absent in the BR genome. We hypothesized that their gene products could be major factors influencing the high virulence of RatPox09. To address this hypothesis, we employed several BR-RatPox09 chimeric viruses. Using Red-mediated mutagenesis, we generated BR-based knock-in mutants with single or multiple insertions of the respective RatPox09 genes. High-throughput sequencing was used to verify the genomic integrity of all recombinant viruses, and transcriptomic analyses confirmed that the expression profiles of the genes that were adjacent to the modified ones were unaltered. While the in vitro growth kinetics were comparable to those of BR and RatPox09, we discovered that a knock-in BR mutant containing the four RatPox09-specific genes was as virulent as the RatPox09 isolate, causing death in over 75% of infected Wistar rats. Unexpectedly, the insertion of gCPXV0030 (g7tGP) alone into the BR genome resulted in significantly higher clinical scores and lower survival rates matching the rate for rats infected with RatPox09. The insertion of gCPXV0284, encoding the BTB (broad-complex, tramtrack, and bric-à-brac) domain protein D7L, also increased the virulence of BR, while the other two open reading frames failed to rescue virulence independently. In summary, our results confirmed our hypothesis that a relatively small set of four genes can contribute significantly to CPXV virulence in the natural rat animal model.IMPORTANCE With the cessation of vaccination against smallpox and its assumed cross-protectivity against other OPV infections, waning immunity could open up new niches for related poxviruses. Therefore, the identification of virulence mechanisms in CPXV is of general interest. Here, we aimed to identify virulence markers in an experimental rodent CPXV infection model using bacterial artificial chromosome (BAC)-based virus recombineering. We focused our work on the recent zoonotic CPXV isolate RatPox09, which is highly pathogenic in Wistar rats, unlike the avirulent BR reference strain. In several animal studies, we were able to identify a novel set of CPXV virulence genes. Two of the identified virulence genes, encoding a putative BTB/POZ protein (CPXVD7L) and a B22R-family protein (CPXV7tGP), respectively, have not yet been described to be involved in CPXV virulence. Our results also show that single genes can significantly affect virulence, thus facilitating adaptation to other hosts.


Assuntos
Vírus da Varíola Bovina , Genoma Viral , Mutação , Animais , Chlorocebus aethiops , Varíola Bovina/genética , Varíola Bovina/metabolismo , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/metabolismo , Vírus da Varíola Bovina/patogenicidade , Humanos , Mutagênese , Ratos , Ratos Wistar , Células Vero
12.
Viruses ; 11(12)2019 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-31817946

RESUMO

Peste-des-petits-ruminants virus (PPRV) causes a severe respiratory disease in small ruminants. The possible impact of different atypical host species in the spread and planed worldwide eradication of PPRV remains to be clarified. Recent transmission trials with the virulent PPRV lineage IV (LIV)-strain Kurdistan/2011 revealed that pigs and wild boar are possible sources of PPRV-infection. We therefore investigated the role of cattle, llamas, alpacas, and dromedary camels in transmission trials using the Kurdistan/2011 strain for intranasal infection and integrated a literature review for a proper evaluation of their host traits and role in PPRV-transmission. Cattle and camelids developed no clinical signs, no viremia, shed no or only low PPRV-RNA loads in swab samples and did not transmit any PPRV to the contact animals. The distribution of PPRV-RNA or antigen in lymphoid organs was similar in cattle and camelids although generally lower compared to suids and small ruminants. In the typical small ruminant hosts, the tissue tropism, pathogenesis and disease expression after PPRV-infection is associated with infection of immune and epithelial cells via SLAM and nectin-4 receptors, respectively. We therefore suggest a different pathogenesis in cattle and camelids and both as dead-end hosts for PPRV.


Assuntos
Camelus/virologia , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/fisiologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Biomarcadores , Biópsia , Bovinos , Feminino , Testes Hematológicos , Imuno-Histoquímica , Masculino , Peste dos Pequenos Ruminantes/sangue , Peste dos Pequenos Ruminantes/patologia
13.
Viruses ; 9(11)2017 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-29156539

RESUMO

Four cowpox virus (CPXV) outbreaks occurred in unrelated alpaca herds in Eastern Germany during 2012-2017. All incidents were initially noticed due to severe, generalized, and finally lethal CPXV infections, which were confirmed by testing of tissue and serum samples. As CPXV-infection has been described in South American camelids (SACs) only three times, all four herds were investigated to gain a deeper understanding of CPXV epidemiology in alpacas. The different herds were investigated twice, and various samples (serum, swab samples, and crusts of suspicious pox lesions, feces) were taken to identify additionally infected animals. Serum was used to detect CPXV-specific antibodies by performing an indirect immunofluorescence assay (iIFA); swab samples, crusts, and feces were used for detection of CPXV-specific DNA in a real-time PCR. In total, 28 out of 107 animals could be identified as affected by CPXV, by iIFA and/or PCR. Herd seroprevalence ranged from 16.1% to 81.2%. To investigate the potential source of infection, wild small mammals were trapped around all alpaca herds. In two herds, CPXV-specific antibodies were found in the local rodent population. In the third herd, CPXV could be isolated from a common vole (Microtus arvalis) found drowned in a water bucket used to water the alpacas. Full genome sequencing and comparison with the genome of a CPXV from an alpaca from the same herd reveal 99.997% identity, providing further evidence that the common vole is a reservoir host and infection source of CPXV. Only in the remaining fourth herd, none of the trapped rodents were found to be CPXV-infected. Rodents, as ubiquitous reservoir hosts, in combination with increasingly popular alpacas, as susceptible species, suggest an enhanced risk of future zoonotic infections.


Assuntos
Camelídeos Americanos/virologia , Varíola Bovina/epidemiologia , Surtos de Doenças , Zoonoses/epidemiologia , Animais , Anticorpos Antivirais/sangue , Arvicolinae/virologia , Varíola Bovina/imunologia , Varíola Bovina/virologia , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/imunologia , Vírus da Varíola Bovina/fisiologia , Reservatórios de Doenças/virologia , Alemanha/epidemiologia , Filogenia , Reação em Cadeia da Polimerase , Estudos Soroepidemiológicos , Zoonoses/imunologia , Zoonoses/virologia
14.
Evol Appl ; 10(10): 1091-1101, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29151863

RESUMO

Virulence determines the impact a pathogen has on the fitness of its host, yet current understanding of the evolutionary origins and causes of virulence of many pathogens is surprisingly incomplete. Here, we explore the evolution of Marek's disease virus (MDV), a herpesvirus commonly afflicting chickens and rarely other avian species. The history of MDV in the 20th century represents an important case study in the evolution of virulence. The severity of MDV infection in chickens has been rising steadily since the adoption of intensive farming techniques and vaccination programs in the 1950s and 1970s, respectively. It has remained uncertain, however, which of these factors is causally more responsible for the observed increase in virulence of circulating viruses. We conducted a phylogenomic study to understand the evolution of MDV in the context of dramatic changes to poultry farming and disease control. Our analysis reveals evidence of geographical structuring of MDV strains, with reconstructions supporting the emergence of virulent viruses independently in North America and Eurasia. Of note, the emergence of virulent viruses appears to coincide approximately with the introduction of comprehensive vaccination on both continents. The time-dated phylogeny also indicated that MDV has a mean evolutionary rate of ~1.6 × 10-5 substitutions per site per year. An examination of gene-linked mutations did not identify a strong association between mutational variation and virulence phenotypes, indicating that MDV may evolve readily and rapidly under strong selective pressures and that multiple genotypic pathways may underlie virulence adaptation in MDV.

15.
Viruses ; 9(6)2017 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-28604604

RESUMO

Cowpox virus (CPXV) was considered as uniform species within the genus Orthopoxvirus (OPV). Previous phylogenetic analysis indicated that CPXV is polyphyletic and isolates may cluster into different clades with two of these clades showing genetic similarities to either variola (VARV) or vaccinia viruses (VACV). Further analyses were initiated to assess both the genetic diversity and the evolutionary background of circulating CPXVs. Here we report the full-length sequences of 20 CPXV strains isolated from different animal species and humans in Germany. A phylogenetic analysis of altogether 83 full-length OPV genomes confirmed the polyphyletic character of the species CPXV and suggested at least four different clades. The German isolates from this study mainly clustered into two CPXV-like clades, and VARV- and VACV-like strains were not observed. A single strain, isolated from a cotton-top tamarin, clustered distantly from all other CPXVs and might represent a novel and unique evolutionary lineage. The classification of CPXV strains into clades roughly followed their geographic origin, with the highest clade diversity so far observed for Germany. Furthermore, we found evidence for recombination between OPV clades without significant disruption of the observed clustering. In conclusion, this analysis markedly expands the number of available CPXV full-length sequences and confirms the co-circulation of several CPXV clades in Germany, and provides the first data about a new evolutionary CPXV lineage.


Assuntos
Vírus da Varíola Bovina/classificação , Variação Genética , Animais , Análise por Conglomerados , Varíola Bovina/virologia , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/isolamento & purificação , Genoma Viral , Alemanha , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fenótipo , Filogenia , Recombinação Genética , Vaccinia virus/genética , Vírus da Varíola/genética
16.
Emerg Infect Dis ; 23(3): 477-481, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28221112

RESUMO

We screened squirrels in Germany and the Netherlands for the novel zoonotic variegated squirrel bornavirus 1 (VSBV-1). The detection of VSBV-1 in 11 squirrels indicates a considerable risk for transmission to humans handling those animals. Therefore, squirrels in contact with humans should routinely be tested for VSBV-1.


Assuntos
Bornaviridae/classificação , Bornaviridae/isolamento & purificação , Infecções por Mononegavirales/veterinária , Sciuridae/virologia , Animais , Alemanha/epidemiologia , Humanos , Infecções por Mononegavirales/epidemiologia , Infecções por Mononegavirales/virologia , Países Baixos/epidemiologia , Fatores de Risco , Zoonoses
17.
Arch Virol ; 162(3): 775-786, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27885563

RESUMO

Classical swine fever (CSF) can run acute, chronic, and prenatal courses in both domestic pigs and wild boar. Although chronic infections are rare events, their epidemiological impact is very high due to the long-term shedding of virus. So far, little is known about the factors that influence disease course and outcome from either the host or virus's perspective. To elucidate the viral determinants, we analyzed the role of the viral populations for the development of chronic CSF virus (CSFV) infections. Three different animal trials that had led to both chronic and acute infections were chosen for a detailed analysis by deep sequencing. The three inocula represented sub-genogroups 2.1 and 2.3, and two viruses were wild-type CSFV, one derived from an infectious cDNA clone. These viruses and samples derived from acutely and chronically infected animals were subjected to next-generation sequencing. Subsequently, the derived full-length genomes were compared at both the consensus and the quasispecies level. At consensus level, no differences were observed between the parental viruses and the viruses obtained from chronically infected animals. Despite a considerable level of variability at the quasispecies level, no indications were found for any predictive pattern with regard to the chronicity of the CSFV infections. While there might be no direct marker for chronicity, moderate virulence of some CSFV strains in itself seems to be a crucial prerequisite for the establishment of long-term infections which does not need further genetic adaption. Thus, general host and virus factors need further investigation.


Assuntos
Vírus da Febre Suína Clássica/isolamento & purificação , Peste Suína Clássica/virologia , Doença Aguda , Animais , Biodiversidade , Doença Crônica , Vírus da Febre Suína Clássica/classificação , Vírus da Febre Suína Clássica/genética , Filogenia , Sus scrofa , Suínos , Virulência
18.
Virus Genes ; 52(6): 806-813, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27540741

RESUMO

Shuni virus (SHUV) was recently identified in Israel in several brains of ovine, bovine, and goat fetuses and newborn animals with congenital arthrogryposis-hydranencephaly syndrome. In the present study, the sequences of several Israeli SHUV strains were analyzed in detail; based on the small genome segment which encodes the nucleocapsid protein and the small nonstructural protein (NSs), a very high similarity of 99-100 % among each other was found. In contrast to the highly conserved N protein, several mutations were found within the NSs-coding sequence of SHUVs present in brain samples of malformed fetuses, resulting in a considerably frequent appearance of stop codons. Interferon alpha/beta production was demonstrated in an in-vitro interferon bioassay; hence, the virus isolated from the brain of a malformed sheep fetus acquired mutations, resulting in the loss of its NSs protein function.


Assuntos
Doenças dos Animais/virologia , Infecções por Bunyaviridae/veterinária , Orthobunyavirus , Sequência de Aminoácidos , Doenças dos Animais/epidemiologia , Animais , Bovinos , Linhagem Celular , Células Cultivadas , Interferons/biossíntese , Israel , Fases de Leitura Aberta , Orthobunyavirus/classificação , Orthobunyavirus/genética , Filogenia , Ruminantes , Análise de Sequência de DNA , Ovinos , Proteínas não Estruturais Virais/genética
19.
J Gen Virol ; 97(9): 2073-2083, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27435041

RESUMO

During the compulsory vaccination programme against bluetongue virus serotype 1 (BTV-1) in Corsica (France) in 2014, a BTV strain belonging to a previously uncharacterized serotype (BTV-27) was isolated from asymptomatic goats. The present study describes the detection and molecular characterization of two additional distinct BTV-27 variants found in goats in Corsica in 2014 and 2015. The full coding genome of these two novel BTV-27 variants show high homology (90-93 % nucleotide/93-95 % amino acid) with the originally described BTV-27 isolate from Corsican goats in 2014. These three variants constitute the novel serotype BTV-27 ('BTV-27/FRA2014/v01 to v03'). Phylogenetic analyses with the 26 other established BTV serotypes revealed the closest relationship to BTV-25 (SWI2008/01) (80 % nucleotide/86 % amino acid) and to BTV-26 (KUW2010/02) (73-74 % nucleotide/80-81 % amino acid). However, highest sequence homologies between individual segments of BTV-27/FRA2014/v01-v03 with BTV-25 and BTV-26 vary. All three variants share the same segment 2 nucleotype with BTV-25. Neutralization assays of anti-BTV27/FRA2014/v01-v03 sera with a reassortant virus containing the outer capsid proteins of BTV-25 (BTV1VP2/VP5 BTV25) further confirmed that BTV-27 represents a distinct BTV serotype. Relationships between the variants and with BTV-25 and BTV-26, hypotheses about their origin, reassortment events and evolution are discussed.


Assuntos
Vírus Bluetongue/classificação , Vírus Bluetongue/isolamento & purificação , Bluetongue/virologia , Sorogrupo , Animais , Doenças Assintomáticas , Análise por Conglomerados , França , Genoma Viral , Cabras , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência
20.
Vector Borne Zoonotic Dis ; 16(6): 431-3, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27159333

RESUMO

The article describes the isolation of a cowpox virus (CPXV) isolate originating from a horse. The skin of a foal, aborted in the third trimester, displayed numerous cutaneous papules. The histological examination showed A-type inclusion bodies within the lesion, typical for CPXV infections. This suspicion was confirmed by real-time PCR where various organs were analyzed. From skin samples, virus isolation was successfully performed. Afterwards, the whole genome of this new isolate "CPXV Amadeus" was sequenced by next-generation technology. Phylogenetic analysis clearly showed that "CPXV Amadeus" belongs to the "CPXV-like 1" clade. To our opinion, the study provides important additional information on rare accidental CPXV infections. From the natural hosts, the voles, species such as rats, cats, or different zoo animals are occasionally infected, but until now only two horse cases are described. In addition, there are new insights toward congenital CPXV infections.


Assuntos
Aborto Animal , Vírus da Varíola Bovina/isolamento & purificação , Varíola Bovina/veterinária , Feto/virologia , Doenças dos Cavalos/virologia , Animais , Varíola Bovina/patologia , Varíola Bovina/virologia , Vírus da Varíola Bovina/genética , Evolução Fatal , Genoma Viral , Doenças dos Cavalos/patologia , Cavalos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...