Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(45): 17263-17276, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36317406

RESUMO

In recent years, Ru(II) complexes have gained high importance in medicinal chemistry due to their significant anti-cancer activities, which are directly related to their DNA binding ability. In this report, the chemistry and cytotoxicity of two new Ru(II) complexes containing imidazole pyridine (Ru-1) and imidazole quinoline (Ru-2) have been studied. The prepared compounds were characterized using infrared (IR), nuclear magnetic resonance (NMR), mass spectrometry (MS), isothermal titration calorimetry (ITC), UV-Vis, and fluorescence spectral techniques. The structural analyses show that the Ru(II) complexes exhibit a 'piano stool' coordination geometry and they are composed of one bound arene, two sigma bonded benzil nitrogen atoms, and labile chlorine linked to Ru(II). The photo-physical properties of these complexes were examined, and they exhibit absorption peaks at 260 nm and 380 nm, which are due to the involvement of intra-ligand charge transitions (ILCT) and metal-to-ligand charge transitions (MLCT), respectively. The binding process of the Ru(II) complexes with DNA and BSA is non-covalent in nature and the binding constants of Ru-1 and Ru-2 complexes with DNA and BSA were found to be 1 × 105 M-1 and 1 × 103 M-1, respectively. In the presence of the Ru(II) complexes, ethidium bromide (EtBr) is competitively displaced from DNA by intercalation of the Ru(II) complexes in DNA and it is well corroborated by viscosity and in silico studies. Both the ligands and Ru(II) complexes were carefully investigated in vitro for cytotoxicity against HeLa, MCF-7, and MDA-MB-231 cells. Surprisingly, both Ru(II) complexes exhibit superior cytotoxicity to cisplatin with a low LD50 value against the examined cancer cells. Besides, an insignificant effect on HEK normal cells (LD50 > 140 µM) was observed.


Assuntos
Antineoplásicos , Complexos de Coordenação , Quinolinas , Rutênio , Humanos , Rutênio/química , Ligantes , Complexos de Coordenação/química , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , DNA/química , Imidazóis/farmacologia , Quinolinas/farmacologia , Piridinas/farmacologia , Linhagem Celular Tumoral
2.
J Am Soc Mass Spectrom ; 32(1): 355-363, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33200609

RESUMO

Microdroplet impact-induced spray ionization (MISI) is demonstrated involving the impact of microdroplets produced from a paper and their impact on another, leading to the ionization of analytes deposited on the latter. This cascaded process is more advantageous in comparison to standard spray ionization as it performs reactions and ionization simultaneously in the absence of high voltage directly applied on the sample. In MISI, we apply direct current (DC) potential only to the terminal paper, used as the primary ion source. Charge transfer due to microdroplet/ion deposition on the flowing analyte solution on the second surface generates secondary charged microdroplets from it carrying the analytes, which ionize and get detected by a mass spectrometer. In this way, up to three cascaded spray sources could be assembled in series. We show the detection of small molecules and proteins in such ionization events. MISI provides a method to understand chemical reactions by droplet impact. The C-C bond formation reactions catalyzed by palladium and alkali metal ion encapsulation using crown ether were studied as our model reactions. To demonstrate the application of our ion source in a bioanalytical context, we studied the noninvasive in situ discrimination of bacteria samples under ambient conditions.


Assuntos
Bactérias/química , Lipídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Anisóis/química , Bacillus subtilis/química , Carbono/química , Catálise , Escherichia coli/química , Lipídeos/química , Pseudomonas putida/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação
3.
Analyst ; 144(24): 7412-7420, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31674602

RESUMO

We introduce a technique called ambient electrospray deposition Raman spectroscopy (AESD RS) for rapid and sensitive surface-enhanced Raman scattering (SERS) based detection of analytes using a miniature Raman spectrometer. Using electrospray, soft landing of preformed silver nanoparticles (AgNPs) was performed for 30-40 seconds for different concentrations of analytes deposited on conducting glass slides. Using AESD RS, SERS signals were collected within 4-6 minutes, including sample preparation. Transmission electron microscopy (TEM) and dark-field microscopy (DFM) were used to characterize the preformed AgNPs before and after electrospray. We achieved the nanomolar and micromolar detection of p-mercaptobenzoic acid (p-MBA) and 2,4-dinitrotoluene (2,4-DNT), respectively. In this work, 0.3 µL of preformed AgNPs were used, which is ∼33 times less in volume than the quantity needed for conventional SERS. Quantitation of unknown concentration of analytes was also possible. A similar amount of electrosprayed AgNPs was utilized to characterize Escherichia coli (E. coli) bacteria of different concentrations. Viability of bacteria was tested using fluorescence microscopic imaging. Besides reduced analysis time and improved reproducibility of the data in every analysis, which is generally difficult in SERS, the amount of AgNPs required is an order of magnitude lower in this method. This method could also be used to probe the real-time changes in molecular and biological species under ambient conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...