Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 33(21): 3437-3444, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28666320

RESUMO

MOTIVATION: The availability of more data of dynamic gene expression under multiple experimental conditions provides new information that makes the key goal of identifying not only the transcriptional regulators of a gene but also the underlying logical structure attainable. RESULTS: We propose a novel method for inferring transcriptional regulation using a simple, yet biologically interpretable, model to find the logic by which a set of candidate genes and their associated transcription factors (TFs) regulate the transcriptional process of a gene of interest. Our dynamic model links the mRNA transcription rate of the target gene to the activation states of the TFs assuming that these interactions are consistent across multiple experiments and over time. A trans-dimensional Markov Chain Monte Carlo (MCMC) algorithm is used to efficiently sample the regulatory logic under different combinations of parents and rank the estimated models by their posterior probabilities. We demonstrate and compare our methodology with other methods using simulation examples and apply it to a study of transcriptional regulation of selected target genes of Arabidopsis Thaliana from microarray time series data obtained under multiple biotic stresses. We show that our method is able to detect complex regulatory interactions that are consistent under multiple experimental conditions. AVAILABILITY AND IMPLEMENTATION: Programs are written in MATLAB and Statistics Toolbox Release 2016b, The MathWorks, Inc., Natick, Massachusetts, United States and are available on GitHub https://github.com/giorgosminas/TRS and at http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software. CONTACT: giorgos.minas@warwick.ac.uk or b.f.finkenstadt@warwick.ac.uk. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Biologia Computacional/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Arabidopsis/genética , Interpretação Estatística de Dados , Lógica , Cadeias de Markov , Modelos Biológicos , Fatores de Transcrição/metabolismo , Transcrição Gênica
2.
BMC Bioinformatics ; 18(1): 316, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28651569

RESUMO

BACKGROUND: Given the development of high-throughput experimental techniques, an increasing number of whole genome transcription profiling time series data sets, with good temporal resolution, are becoming available to researchers. The ReTrOS toolbox (Reconstructing Transcription Open Software) provides MATLAB-based implementations of two related methods, namely ReTrOS-Smooth and ReTrOS-Switch, for reconstructing the temporal transcriptional activity profile of a gene from given mRNA expression time series or protein reporter time series. The methods are based on fitting a differential equation model incorporating the processes of transcription, translation and degradation. RESULTS: The toolbox provides a framework for model fitting along with statistical analyses of the model with a graphical interface and model visualisation. We highlight several applications of the toolbox, including the reconstruction of the temporal cascade of transcriptional activity inferred from mRNA expression data and protein reporter data in the core circadian clock in Arabidopsis thaliana, and how such reconstructed transcription profiles can be used to study the effects of different cell lines and conditions. CONCLUSIONS: The ReTrOS toolbox allows users to analyse gene and/or protein expression time series where, with appropriate formulation of prior information about a minimum of kinetic parameters, in particular rates of degradation, users are able to infer timings of changes in transcriptional activity. Data from any organism and obtained from a range of technologies can be used as input due to the flexible and generic nature of the model and implementation. The output from this software provides a useful analysis of time series data and can be incorporated into further modelling approaches or in hypothesis generation.


Assuntos
Proteínas/metabolismo , RNA Mensageiro/metabolismo , Software , Algoritmos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Transcrição Gênica
3.
Plant Cell ; 28(2): 345-66, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26842464

RESUMO

In Arabidopsis thaliana, changes in metabolism and gene expression drive increased drought tolerance and initiate diverse drought avoidance and escape responses. To address regulatory processes that link these responses, we set out to identify genes that govern early responses to drought. To do this, a high-resolution time series transcriptomics data set was produced, coupled with detailed physiological and metabolic analyses of plants subjected to a slow transition from well-watered to drought conditions. A total of 1815 drought-responsive differentially expressed genes were identified. The early changes in gene expression coincided with a drop in carbon assimilation, and only in the late stages with an increase in foliar abscisic acid content. To identify gene regulatory networks (GRNs) mediating the transition between the early and late stages of drought, we used Bayesian network modeling of differentially expressed transcription factor (TF) genes. This approach identified AGAMOUS-LIKE22 (AGL22), as key hub gene in a TF GRN. It has previously been shown that AGL22 is involved in the transition from vegetative state to flowering but here we show that AGL22 expression influences steady state photosynthetic rates and lifetime water use. This suggests that AGL22 uniquely regulates a transcriptional network during drought stress, linking changes in primary metabolism and the initiation of stress responses.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Teorema de Bayes , Análise por Conglomerados , Secas , Redes Reguladoras de Genes , Mutação , Fenótipo , Fotossíntese/fisiologia , Estresse Fisiológico , Fatores de Transcrição/genética
4.
Plant Cell ; 27(11): 3038-64, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26566919

RESUMO

Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae.


Assuntos
Arabidopsis/imunologia , Terapia de Imunossupressão , Moléculas com Motivos Associados a Patógenos/metabolismo , Imunidade Vegetal/genética , Folhas de Planta/imunologia , Pseudomonas syringae/fisiologia , Transcrição Gênica , Arabidopsis/genética , Arabidopsis/microbiologia , Sequência de Bases , Cromatina/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes Reguladoras de Genes , Genes de Plantas , Dados de Sequência Molecular , Motivos de Nucleotídeos/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Regiões Promotoras Genéticas/genética , Pseudomonas syringae/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo
5.
Bioinformatics ; 30(7): 962-70, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24351708

RESUMO

MOTIVATION: Identification of modules of co-regulated genes is a crucial first step towards dissecting the regulatory circuitry underlying biological processes. Co-regulated genes are likely to reveal themselves by showing tight co-expression, e.g. high correlation of expression profiles across multiple time series datasets. However, numbers of up- or downregulated genes are often large, making it difficult to discriminate between dependent co-expression resulting from co-regulation and independent co-expression. Furthermore, modules of co-regulated genes may only show tight co-expression across a subset of the time series, i.e. show condition-dependent regulation. RESULTS: Wigwams is a simple and efficient method to identify gene modules showing evidence for co-regulation in multiple time series of gene expression data. Wigwams analyzes similarities of gene expression patterns within each time series (condition) and directly tests the dependence or independence of these across different conditions. The expression pattern of each gene in each subset of conditions is tested statistically as a potential signature of a condition-dependent regulatory mechanism regulating multiple genes. Wigwams does not require particular time points and can process datasets that are on different time scales. Differential expression relative to control conditions can be taken into account. The output is succinct and non-redundant, enabling gene network reconstruction to be focused on those gene modules and combinations of conditions that show evidence for shared regulatory mechanisms. Wigwams was run using six Arabidopsis time series expression datasets, producing a set of biologically significant modules spanning different combinations of conditions. AVAILABILITY AND IMPLEMENTATION: A Matlab implementation of Wigwams, complete with graphical user interfaces and documentation, is available at: warwick.ac.uk/wigwams. .


Assuntos
Perfilação da Expressão Gênica/métodos , Expressão Gênica , Software , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes
6.
Bioinformatics ; 29(9): 1158-65, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23479351

RESUMO

MOTIVATION: The analysis and mechanistic modelling of time series gene expression data provided by techniques such as microarrays, NanoString, reverse transcription-polymerase chain reaction and advanced sequencing are invaluable for developing an understanding of the variation in key biological processes. We address this by proposing the estimation of a flexible dynamic model, which decouples temporal synthesis and degradation of mRNA and, hence, allows for transcriptional activity to switch between different states. RESULTS: The model is flexible enough to capture a variety of observed transcriptional dynamics, including oscillatory behaviour, in a way that is compatible with the demands imposed by the quality, time-resolution and quantity of the data. We show that the timing and number of switch events in transcriptional activity can be estimated alongside individual gene mRNA stability with the help of a Bayesian reversible jump Markov chain Monte Carlo algorithm. To demonstrate the methodology, we focus on modelling the wild-type behaviour of a selection of 200 circadian genes of the model plant Arabidopsis thaliana. The results support the idea that using a mechanistic model to identify transcriptional switch points is likely to strongly contribute to efforts in elucidating and understanding key biological processes, such as transcription and degradation.


Assuntos
Algoritmos , Modelos Genéticos , Transcrição Gênica , Arabidopsis/genética , Arabidopsis/metabolismo , Teorema de Bayes , Ritmo Circadiano/genética , Cinética , Cadeias de Markov , Método de Monte Carlo , Regiões Promotoras Genéticas , Estabilidade de RNA , RNA Mensageiro/metabolismo
7.
Plant Cell ; 24(9): 3530-57, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23023172

RESUMO

Transcriptional reprogramming forms a major part of a plant's response to pathogen infection. Many individual components and pathways operating during plant defense have been identified, but our knowledge of how these different components interact is still rudimentary. We generated a high-resolution time series of gene expression profiles from a single Arabidopsis thaliana leaf during infection by the necrotrophic fungal pathogen Botrytis cinerea. Approximately one-third of the Arabidopsis genome is differentially expressed during the first 48 h after infection, with the majority of changes in gene expression occurring before significant lesion development. We used computational tools to obtain a detailed chronology of the defense response against B. cinerea, highlighting the times at which signaling and metabolic processes change, and identify transcription factor families operating at different times after infection. Motif enrichment and network inference predicted regulatory interactions, and testing of one such prediction identified a role for TGA3 in defense against necrotrophic pathogens. These data provide an unprecedented level of detail about transcriptional changes during a defense response and are suited to systems biology analyses to generate predictive models of the gene regulatory networks mediating the Arabidopsis response to B. cinerea.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Botrytis/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Doenças das Plantas/imunologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Botrytis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Modelos Genéticos , Mutação , Motivos de Nucleotídeos , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Transcriptoma
8.
Adv Exp Med Biol ; 751: 301-28, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22821464

RESUMO

We describe the use of computational models of evolution of artificial gene regulatory networks to understand the topologies of biological gene regulatory networks. We summarize results from three complementary approaches that explicitly represent biological processes of transcription, translation, metabolism and gene regulation: a fine-grained model that allows detailed molecular interactions, a coarse-grained model that allows rapid evolution of many generations, and a fixed-architecture model that allows for comparison of different hypotheses. In the first two cases, we are able to evolve networks towards the biological fitness objectives of survival and reproduction. A theme that emerges is that the control of cell energy and resources is a major driver of gene network topology and function. This is demonstrated in the fine-grained model with the emergence of biologically realistic mRNA and protein turnover rates that optimize energy usage and cell division time, and the evolution of basic repressor activities; in the fixed architecture model with a negative self-regulating gene evolving major efficiencies in mRNA usage; and in the coarse-grained model by the need for the inclusion of basal gene expression to obtain biologically plausible networks and the emergence of global regulators keeping all cellular systems under negative control. In summary, we demonstrate the value of biologically realistic computer evolution techniques, and the importance of energy and resource management in driving the topology and function of gene regulatory networks.


Assuntos
Metabolismo Energético/genética , Redes Reguladoras de Genes , Biossíntese de Proteínas/genética , Transcrição Gênica , Bactérias/genética , Evolução Biológica , Divisão Celular/genética , Simulação por Computador , Fungos/genética , Regulação da Expressão Gênica , Aptidão Genética , Modelos Genéticos , Proteínas/genética , RNA Mensageiro/genética , Biologia de Sistemas
9.
J Mol Evol ; 71(2): 128-40, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20680619

RESUMO

Gene regulatory networks exhibit complex, hierarchical features such as global regulation and network motifs. There is much debate about whether the evolutionary origins of such features are the results of adaptation, or the by-products of non-adaptive processes of DNA replication. The lack of availability of gene regulatory networks of ancestor species on evolutionary timescales makes this a particularly difficult problem to resolve. Digital organisms, however, can be used to provide a complete evolutionary record of lineages. We use a biologically realistic evolutionary model that includes gene expression, regulation, metabolism and biosynthesis, to investigate the evolution of complex function in gene regulatory networks. We discover that: (i) network architecture and complexity evolve in response to environmental complexity, (ii) global gene regulation is selected for in complex environments, (iii) complex, inter-connected, hierarchical structures evolve in stages, with energy regulation preceding stress responses, and stress responses preceding growth rate adaptations and (iv) robustness of evolved models to mutations depends on hierarchical level: energy regulation and stress responses tend not to be robust to mutations, whereas growth rate adaptations are more robust and non-lethal when mutated. These results highlight the adaptive and incremental evolution of complex biological networks, and the value and potential of studying realistic in silico evolutionary systems as a way of understanding living systems.


Assuntos
Evolução Molecular , Redes Reguladoras de Genes/genética , Animais , Sítios de Ligação/genética , Simulação por Computador , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Modelos Biológicos , Modelos Teóricos , Biossíntese de Proteínas/fisiologia , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Especificidade por Substrato/genética , Fatores de Tempo , Transcrição Gênica/fisiologia
10.
J Mol Evol ; 70(2): 215-31, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20151115

RESUMO

Gene regulation is one important mechanism in producing observed phenotypes and heterogeneity. Consequently, the study of gene regulatory network (GRN) architecture, function and evolution now forms a major part of modern biology. However, it is impossible to experimentally observe the evolution of GRNs on the timescales on which living species evolve. In silico evolution provides an approach to studying the long-term evolution of GRNs, but many models have either considered network architecture from non-adaptive evolution, or evolution to non-biological objectives. Here, we address a number of important modelling and biological questions about the evolution of GRNs to the realistic goal of biomass production. Can different commonly used simulation paradigms, in particular deterministic and stochastic Boolean networks, with and without basal gene expression, be used to compare adaptive with non-adaptive evolution of GRNs? Are these paradigms together with this goal sufficient to generate a range of solutions? Will the interaction between a biological goal and evolutionary dynamics produce trade-offs between growth and mutational robustness? We show that stochastic basal gene expression forces shrinkage of genomes due to energetic constraints and is a prerequisite for some solutions. In systems that are able to evolve rates of basal expression, two optima, one with and one without basal expression, are observed. Simulation paradigms without basal expression generate bloated networks with non-functional elements. Further, a range of functional solutions was observed under identical conditions only in stochastic networks. Moreover, there are trade-offs between efficiency and yield, indicating an inherent intertwining of fitness and evolutionary dynamics.


Assuntos
Evolução Molecular , Redes Reguladoras de Genes , Modelos Genéticos , Trifosfato de Adenosina/metabolismo , Simulação por Computador , Escherichia coli/genética , Escherichia coli/metabolismo , Mutação , Ácidos Nucleicos/metabolismo , Processos Estocásticos
11.
Artif Life ; 15(3): 259-91, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19254178

RESUMO

Biological systems show unbounded capacity for complex behaviors and responses to their environments. This principally arises from their genetic networks. The processes governing transcription, translation, and gene regulation are well understood, as are the mechanisms of network evolution, such as gene duplication and horizontal gene transfer. However, the evolved networks arising from these simple processes are much more difficult to understand, and it is difficult to perform experiments on the evolution of these networks in living organisms because of the timescales involved. We propose a new framework for modeling and investigating the evolution of transcription networks in realistic, varied environments. The model we introduce contains novel, important, and lifelike features that allow the evolution of arbitrarily complex transcription networks. Molecular interactions are not specified; instead they are determined dynamically based on shape, allowing protein function to freely evolve. Transcriptional logic provides a flexible mechanism for defining genetic regulatory activity. Simulations demonstrate a realistic life cycle as an emergent property, and that even in simple environments lifelike and complex regulation mechanisms are evolved, including stable proteins, unstable mRNA, and repressor activity. This study also highlights the importance of using in silico genetics techniques to investigate evolved model robustness.


Assuntos
Redes Reguladoras de Genes , Biologia de Sistemas , Transcrição Gênica , Sítio Alostérico , Inteligência Artificial , Proteínas de Bactérias/metabolismo , Evolução Biológica , Biologia Computacional/métodos , Simulação por Computador , Modelos Biológicos , Modelos Genéticos , Modelos Teóricos , Ligação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo
12.
BMC Syst Biol ; 2: 6, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18205926

RESUMO

BACKGROUND: Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. RESULTS: We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. CONCLUSION: Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic models with strong repressors.


Assuntos
Regulação para Baixo , Células Procarióticas/metabolismo , Fatores de Transcrição/metabolismo , Análise de Variância , Evolução Biológica , Simulação por Computador , Regulação da Expressão Gênica em Archaea/genética , Regulação Bacteriana da Expressão Gênica/genética , Homeostase/genética , Modelos Genéticos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Processos Estocásticos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...