Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 141(2): 596-612, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29272333

RESUMO

Microglia significantly contribute to the pathophysiology of Alzheimer's disease but an effective microglia-targeted therapeutic approach is not yet available clinically. The potassium channels Kv1.3 and Kir2.1 play important roles in regulating immune cell functions and have been implicated by in vitro studies in the 'M1-like pro-inflammatory' or 'M2-like anti-inflammatory' state of microglia, respectively. We here found that amyloid-ß oligomer-induced expression of Kv1.3 and Kir2.1 in cultured primary microglia. Likewise, ex vivo microglia acutely isolated from the Alzheimer's model 5xFAD mice co-expressed Kv1.3 and Kir2.1 as well as markers traditionally associated with M1 and M2 activation suggesting that amyloid-ß oligomer induces a microglial activation state that is more complex than previously thought. Using the orally available, brain penetrant small molecule Kv1.3 blocker PAP-1 as a tool, we showed that pro-inflammatory and neurotoxic microglial responses induced by amyloid-ß oligomer required Kv1.3 activity in vitro and in hippocampal slices. Since we further observed that Kv1.3 was highly expressed in microglia of transgenic Alzheimer's mouse models and human Alzheimer's disease brains, we hypothesized that pharmacological Kv1.3 inhibition could mitigate the pathology induced by amyloid-ß aggregates. Indeed, treating APP/PS1 transgenic mice with a 5-month oral regimen of PAP-1, starting at 9 months of age, when the animals already manifest cognitive deficits and amyloid pathology, reduced neuroinflammation, decreased cerebral amyloid load, enhanced hippocampal neuronal plasticity, and improved behavioural deficits. The observed decrease in cerebral amyloid deposition was consistent with the in vitro finding that PAP-1 enhanced amyloid-ß uptake by microglia. Collectively, these results provide proof-of-concept data to advance Kv1.3 blockers to Alzheimer's disease clinical trials.


Assuntos
Doença de Alzheimer , Canal de Potássio Kv1.3/metabolismo , Microglia/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Recém-Nascidos , Aprendizagem da Esquiva/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Ficusina/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Canal de Potássio Kv1.3/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Mutação/genética , Fragmentos de Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Presenilina-1/genética , Canais de Potássio Shab/metabolismo
2.
Mol Pharmacol ; 91(4): 392-402, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28126850

RESUMO

The intermediate-conductance Ca2+-activated K+ channel (KCa3.1) constitutes an attractive pharmacological target for immunosuppression, fibroproliferative disorders, atherosclerosis, and stroke. However, there currently is no available crystal structure of this medically relevant channel that could be used for structure-assisted drug design. Using the Rosetta molecular modeling suite we generated a molecular model of the KCa3.1 pore and tested the model by first confirming previously mapped binding sites and visualizing the mechanism of TRAM-34 (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole), senicapoc (2,2-bis-(4-fluorophenyl)-2-phenylacetamide), and NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4-benzothiazin-3(4H)-one) inhibition at the atomistic level. All three compounds block ion conduction directly by fully or partially occupying the site that would normally be occupied by K+ before it enters the selectivity filter. We then challenged the model to predict the receptor sites and mechanisms of action of the dihydropyridine nifedipine and an isosteric 4-phenyl-pyran. Rosetta predicted receptor sites for nifedipine in the fenestration region and for the 4-phenyl-pyran in the pore lumen, which could both be confirmed by site-directed mutagenesis and electrophysiology. While nifedipine is thus not a pore blocker and might be stabilizing the channel in a nonconducting conformation or interfere with gating, the 4-phenyl-pyran was found to be a classical pore blocker that directly inhibits ion conduction similar to the triarylmethanes TRAM-34 and senicapoc. The Rosetta KCa3.1 pore model explains the mechanism of action of several KCa3.1 blockers at the molecular level and could be used for structure-assisted drug design.


Assuntos
Modelos Moleculares , Bloqueadores dos Canais de Potássio/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/química , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Nifedipino/química , Nifedipino/farmacologia , Bloqueadores dos Canais de Potássio/química , Domínios Proteicos , Alinhamento de Sequência , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Tiazinas/química , Tiazinas/farmacologia
3.
Neurotherapeutics ; 12(1): 234-49, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25256961

RESUMO

Inhibitors of voltage-gated sodium channels (Na(v)) have been used as anticonvulsants since the 1940s, while potassium channel activators have only been investigated more recently. We here describe the discovery of 2-amino-6-trifluoromethylthio-benzothiazole (SKA-19), a thioanalog of riluzole, as a potent, novel anticonvulsant, which combines the two mechanisms. SKA-19 is a use-dependent NaV channel blocker and an activator of small-conductance Ca(2+)-activated K(+) channels. SKA-19 reduces action potential firing and increases medium afterhyperpolarization in CA1 pyramidal neurons in hippocampal slices. SKA-19 is orally bioavailable and shows activity in a broad range of rodent seizure models. SKA-19 protects against maximal electroshock-induced seizures in both rats (ED50 1.6 mg/kg i.p.; 2.3 mg/kg p.o.) and mice (ED50 4.3 mg/kg p.o.), and is also effective in the 6-Hz model in mice (ED50 12.2 mg/kg), Frings audiogenic seizure-susceptible mice (ED50 2.2 mg/kg), and the hippocampal kindled rat model of complex partial seizures (ED50 5.5 mg/kg). Toxicity tests for abnormal neurological status revealed a therapeutic index (TD50/ED50) of 6-9 following intraperitoneal and of 33 following oral administration. SKA-19 further reduced acute pain in the formalin pain model and raised allodynic threshold in a sciatic nerve ligation model. The anticonvulsant profile of SKA-19 is comparable to riluzole, which similarly affects Na(V) and KCa2 channels, except that SKA-19 has a ~4-fold greater duration of action owing to more prolonged brain levels. Based on these findings we propose that compounds combining KCa2 channel-activating and Na(v) channel-blocking activity exert broad-spectrum anticonvulsant and analgesic effects.


Assuntos
Anticonvulsivantes/farmacologia , Riluzol/análogos & derivados , Riluzol/farmacologia , Convulsões/tratamento farmacológico , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Canais de Sódio Disparados por Voltagem/metabolismo
4.
Mol Pharmacol ; 85(4): 630-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24482397

RESUMO

Bifenthrin, a relatively stable type I pyrethroid that causes tremors and impairs motor activity in rodents, is broadly used. We investigated whether nanomolar bifenthrin alters synchronous Ca(2+) oscillations (SCOs) necessary for activity-dependent dendritic development. Primary mouse cortical neurons were cultured 8 or 9 days in vitro (DIV), loaded with the Ca(2+) indicator Fluo-4, and imaged using a Fluorescence Imaging Plate Reader Tetra. Acute exposure to bifenthrin rapidly increased the frequency of SCOs by 2.7-fold (EC50 = 58 nM) and decreased SCO amplitude by 36%. Changes in SCO properties were independent of modifications in voltage-gated sodium channels since 100 nM bifenthrin had no effect on the whole-cell Na(+) current, nor did it influence neuronal resting membrane potential. The L-type Ca(2+) channel blocker nifedipine failed to ameliorate bifenthrin-triggered SCO activity. By contrast, the metabotropic glutamate receptor (mGluR)5 antagonist MPEP [2-methyl-6-(phenylethynyl)pyridine] normalized bifenthrin-triggered increase in SCO frequency without altering baseline SCO activity, indicating that bifenthrin amplifies mGluR5 signaling independent of Na(+) channel modification. Competitive [AP-5; (-)-2-amino-5-phosphonopentanoic acid] and noncompetitive (dizocilpine, or MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate]) N-methyl-d-aspartate antagonists partially decreased both basal and bifenthrin-triggered SCO frequency increase. Bifenthrin-modified SCO rapidly enhanced the phosphorylation of cAMP response element-binding protein (CREB). Subacute (48 hours) exposure to bifenthrin commencing 2 DIV-enhanced neurite outgrowth and persistently increased SCO frequency and reduced SCO amplitude. Bifenthrin-stimulated neurite outgrowth and CREB phosphorylation were dependent on mGluR5 activity since MPEP normalized both responses. Collectively these data identify a new mechanism by which bifenthrin potently alters Ca(2+) dynamics and Ca(2+)-dependent signaling in cortical neurons that have long term impacts on activity driven neuronal plasticity.


Assuntos
Cálcio/metabolismo , Córtex Cerebral/citologia , Inseticidas/toxicidade , Neurônios/efeitos dos fármacos , Piretrinas/toxicidade , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Neurônios/metabolismo , Fosforilação , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais
5.
Assay Drug Dev Technol ; 11(9-10): 551-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24351043

RESUMO

The intermediate-conductance Ca(2+)-activated K(+) channel KCa3.1 (also known as KCNN4, IK1, or the Gárdos channel) plays an important role in the activation of T and B cells, mast cells, macrophages, and microglia by regulating membrane potential, cellular volume, and calcium signaling. KCa3.1 is further involved in the proliferation of dedifferentiated vascular smooth muscle cells and fibroblast and endothelium-derived hyperpolarization responses in the vascular endothelium. Accordingly, KCa3.1 inhibitors are therapeutically interesting as immunosuppressants and for the treatment of a wide range of fibroproliferative disorders, whereas KCa3.1 activators constitute a potential new class of endothelial function preserving antihypertensives. Here, we report the development of QPatch assays for both KCa3.1 inhibitors and activators. During assay optimization, the Ca(2+) sensitivity of KCa3.1 was studied using varying intracellular Ca(2+) concentrations. A free Ca(2+) concentration of 1 µM was chosen to optimally test inhibitors. To identify activators, which generally act as positive gating modulators, a lower Ca(2+) concentration (∼200 nM) was used. The QPatch results were benchmarked against manual patch-clamp electrophysiology by determining the potency of several commonly used KCa3.1 inhibitors (TRAM-34, NS6180, ChTX) and activators (EBIO, riluzole, SKA-31). Collectively, our results demonstrate that the QPatch provides a comparable but much faster approach to study compound interactions with KCa3.1 channels in a robust and reliable assay.


Assuntos
Bioensaio/métodos , Citometria de Fluxo/métodos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/agonistas , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp/métodos , Bloqueadores dos Canais de Potássio/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Análise de Injeção de Fluxo/métodos , Células HEK293 , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/fisiologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Robótica/métodos
6.
Int J Alzheimers Dis ; 2012: 868972, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22675649

RESUMO

There exists an urgent need for new target discovery to treat Alzheimer's disease (AD); however, recent clinical trials based on anti-Aß and anti-inflammatory strategies have yielded disappointing results. To expedite new drug discovery, we propose reposition targets which have been previously pursued by both industry and academia for indications other than AD. One such target is the calcium-activated potassium channel KCa3.1 (KCNN4), which in the brain is primarily expressed in microglia and is significantly upregulated when microglia are activated. We here review the existing evidence supporting that KCa3.1 inhibition could block microglial neurotoxicity without affecting their neuroprotective phagocytosis activity and without being broadly immunosuppressive. The anti-inflammatory and neuroprotective effects of KCa3.1 blockade would be suitable for treating AD as well as cerebrovascular and traumatic brain injuries, two well-known risk factors contributing to the dementia in AD patients presenting with mixed pathologies. Importantly, the pharmacokinetics and pharmacodynamics of several KCa3.1 blockers are well known, and a KCa3.1 blocker has been proven safe in clinical trials. It is therefore promising to reposition old or new KCa3.1 blockers for AD preclinical and clinical trials.

7.
Front Pharmacol ; 3: 106, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685432

RESUMO

The paucity of specific pharmacological agents has been a major impediment for delineating the roles of gap junction (GJ) channels formed by connexin proteins in physiology and pathophysiology. Here, we used the selective optimization of side activities (SOSA) approach, which has led to the design of high affinity inhibitors of other ion channels, to identify a specific inhibitor for channels formed by Cx50, a connexin subtype that is primarily expressed in the lens. We initially screened a library of common ion channel modulating pharmacophores for their inhibitory effects on Cx50 GJ channels, and identified four new classes of compounds. The triarlymethane (TRAM) clotrimazole was the most potent Cx50 inhibitor and we therefore used it as a template to explore the structure activity relationship (SAR) of the TRAMs for Cx50 inhibition. We describe the design of T122 (N-[(2-methoxyphenyl)diphenylmethyl]-1,3-thiazol-2-amine) and T136 (N-[(2-iodophenyl)diphenylmethyl]-1,3-thiazol-2-amine), which inhibit Cx50 with IC(50)s of 1.2 and 2.4 µM. Both compounds exhibit at least 10-fold selectivity over other connexins as well as major neuronal and cardiac voltage-gated K(+) and Na(+) channels. The SAR studies also indicated that the TRAM pharmacophore required for connexin inhibition is significantly different from the pharmacophore required for blocking the calcium-activated KCa3.1 channel. Both T122 and T136 selectively inhibited Cx50 GJ channels in lens epithelial cells, suggesting that they could be used to further explore the role of Cx50 in the lens. In addition, our results indicate that a similar approach may be used to find specific inhibitors of other connexin subtypes.

8.
Biochem Pharmacol ; 83(9): 1307-17, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22305749

RESUMO

Given their medical importance, most attention has been paid toward the venom composition of scorpions of the Buthidae family. Nevertheless, research has shown that the venom of scorpions of other families is also a remarkable source of unique peptidyl toxins. The κ-KTx family of voltage-gated potassium channel (VGPC) scorpion toxins is hereof an example. From the telson of the scorpion Heterometrus laoticus (Scorpionidae), a peptide, HelaTx1, with unique primary sequence was purified through HPLC and sequenced by Edman degradation. Based on the amino acid sequence, the peptide could be cloned and the cDNA sequence revealed. HelaTx1 was chemically synthesized and functionally characterized on VGPCs of the Shaker-related, Shab-related, Shaw-related and Shal-related subfamilies. Furthermore, the toxin was also tested on small- and intermediate conductance Ca(2+)-activated K(+) channels. From the channels studied, K(v)1.1 and K(v)1.6 were found to be the most sensitive (K(v)1.1 EC(50)=9.9±1.6 µM). The toxin did not alter the activation of the channels. Competition experiments with TEA showed that the toxin is a pore blocker. Mutational studies showed that the residues E353 and Y379 in the pore of K(v)1.1 act as major interaction points for binding of the toxin. Given the amino acid sequence, the predicted secondary structure and the biological activity on VGPCs, HelaTx1 should be included in the κ-KTX family. Based on a phylogenetic study, we rearranged this family of VGPC toxins into five subfamilies and suggest that HelaTx1 is the first member of the new κ-KTx5 subfamily.


Assuntos
Peptídeos/genética , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Venenos de Aranha/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Canal de Potássio Kv1.1/metabolismo , Canal de Potássio Kv1.6/metabolismo , Dados de Sequência Molecular , Mutação , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Peptídeos/metabolismo , Filogenia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Estrutura Secundária de Proteína , Escorpiões/química , Homologia de Sequência de Aminoácidos , Proteínas de Xenopus/metabolismo , Xenopus laevis
9.
Mol Pharmacol ; 79(6): 899-909, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21363929

RESUMO

Acting as a negative gating modulator, (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphthylamine (NS8593) shifts the apparent Ca(2+)-dependence of the small-conductance Ca(2+)-activated K(+) channels K(Ca)2.1-2.3 to higher Ca(2+) concentrations. Similar to the positive K(Ca) channel-gating modulators 1-ethyl-2-benzimidazolinone (1-EBIO) and cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methylpyrimidin-4-yl]-amine (CyPPA), the binding site for NS8593 has been assumed to be located in the C-terminal region, in which these channels interact with their Ca(2+) sensor calmodulin. However, by using a progressive chimeric approach, we were able to localize the site-of-action of NS8593 to the K(Ca)2 pore. For example, when we transferred the C terminus from the NS8593-insensitive intermediate-conductance K(Ca)3.1 channel to K(Ca)2.3, the chimeric channel remained as sensitive to NS8593 as wild-type K(Ca)2.3. In contrast, when we transferred the K(Ca)2.3 pore to K(Ca)3.1, the channel became sensitive to NS8593. Using site-directed mutagenesis, we subsequently identified two specific residues in the inner vestibule of K(Ca)2.3 (Ser507 and Ala532) that determined the effect of NS8593. Mutation of these residues to the corresponding residues in K(Ca)3.1 (Thr250 and Val275) made K(Ca)2.3 insensitive to NS8593, whereas introduction of serine and alanine into K(Ca)3.1 was sufficient to render this channel highly sensitive to NS8593. It is noteworthy that the same two residue positions have been found previously to mediate sensitivity of K(Ca)3.1 to clotrimazole and 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34). The location of Ser507 in the pore-loop near the selectivity filter and Ala532 in an adjacent position in S6 are within the region predicted to contain the K(Ca)2 channel gate. Hence, we propose that NS8593-mediated gating modulation occurs via interaction with gating structures at a position deep within the inner pore vestibule.


Assuntos
1-Naftilamina/análogos & derivados , Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/efeitos dos fármacos , 1-Naftilamina/farmacologia , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Primers do DNA , Humanos , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Homologia de Sequência de Aminoácidos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/química , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...