Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(8): 5359-5368, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39102354

RESUMO

We have studied the endocytic mechanisms that determine subcellular localization for three carrier-free chemotherapeutic-photothermal (chemo-PTT) combination ionic nanomedicines (INMs) composed of doxorubicin (DOX) and an near-infrared (NIR) dye (ICG, IR820, or IR783). This study aims to understand the cellular basis for previously published enhanced toxicity results of these combination nanomedicines toward MCF-7 breast cancer cells. The active transport mechanism of INMs, unlike free DOX, which is known to employ passive transport, was validated by conducting temperature-dependent cellular uptake of the drug in MCF-7 cells using confocal microscopy. The internalization pathway of these INMs was further probed in the presence and absence of different endocytosis inhibitors. Detailed examination of the mode of entry of the carrier-free INMs in MCF-7 cells revealed that they are primarily internalized through clathrin-mediated endocytosis. In addition, time-dependent subcellular localization studies were also investigated. Examination of time-dependent confocal images indicated that the INMs targeted multiple organelles, in contrast to free DOX that primarily targets the nucleus. Collectively, the high cellular endocytic uptake in cancerous cells (EPR effect) and the multimode targeting ability demonstrated the main reason for the low half-maxima inhibitory concentration (IC50) value (the high cytotoxicity) of these carrier-free INMs as compared to their respective parent chemo and PTT drugs.


Assuntos
Doxorrubicina , Endocitose , Nanomedicina , Doxorrubicina/farmacologia , Doxorrubicina/química , Humanos , Endocitose/efeitos dos fármacos , Células MCF-7 , Tamanho da Partícula , Organelas/metabolismo , Organelas/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Ensaios de Seleção de Medicamentos Antitumorais , Sobrevivência Celular/efeitos dos fármacos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Íons/química
2.
Eur J Pharmacol ; 982: 176912, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159716

RESUMO

Glutaminase inhibitors are currently being explored as potential treatments for cancer. This study aimed to elucidate the molecular mechanisms underlying the effects of CB-839 on lung tumor cell lines compared to non-tumor cell lines. Viability assays based on NADPH-dependent dehydrogenases activity, ATP energy production, or mitochondrial reductase activity were used to determine that CB-839 caused significant tumor cell specific inhibition of cellular functions. Clonogenic survival assay revealed a dose dependent reduction in clonogenic survival of various lung tumor cells presenting estimated IC50 values between 10 and 90 nM, while no effect on non-tumor cells was observed. CB-839 led to a 20% reduction in glutaminase (GLS1, a mitochondrial enzyme that catalyzes the conversion of glutamine to glutamate) activity, and a dose-dependent reduced glutamine consumption in tumor cells and had no effect on non-tumor cells. Cell cycle analysis showed the CB-839 did not lead to cell cycle arrest. Apoptosis and necrosis assays revealed an only slight increase in apoptosis in tumor cells. Furthermore, a trypan blue exclusion assay revealed about 40% growth reduction in tumor cells at 0.1-1 µM CB-839 treatment. Surprisingly, treated cells resumed normal growth when re-plated in a drug-free medium, demonstrating reversibility. In hypoxic conditions, CB-839's effect on clonogenic survival was amplified in a dose dependent manner consistent with increased role of GLS1 for energy production under hypoxic conditions. In conclusion, these results suggest CB-839 efficacy is linked to temporary and reversible reduction in glutamine utilization suggesting induction of dormancy.

3.
Semin Radiat Oncol ; 34(3): 284-291, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38880537

RESUMO

The standard of care for radiation therapy is numerous, low-dose fractions that are distributed homogeneously throughout the tumor. An alternative strategy under scrutiny is to apply spatially fractionated radiotherapy (high and low doses throughout the tumor) in one or several fractions, either alone or followed by conventional radiation fractionation . Spatial fractionation allows for significant sparing of normal tissue, and the regions of tumor or normal tissue that received sublethal doses can give rise to beneficial bystander effects in both cases. Bystander effects are broadly defined as biological responses that are significantly greater than would be anticipated based on the radiation dose received. Typically these effects are initiated by diffusion of reactive oxygen species and secretion of various cytokines. As demonstrated in the literature, spatial fractionation related bystander effects can occur locally from cell to cell and in what are known as "cohort effects," which tend to take the form of restructuring of the vasculature, enhanced immune infiltration, and development of immunological memory. Other bystander effects can take place at distant sites in what are known as "abscopal effects." While these events are rare, they are mediated by the immune system and can result in the eradication of secondary and metastatic disease. Currently, due to the complexity and variability of these bystander effects, they are not thoroughly understood, but as knowledge improves they may present significant opportunities for improved clinical outcomes.


Assuntos
Efeito Espectador , Fracionamento da Dose de Radiação , Neoplasias , Efeito Espectador/efeitos da radiação , Humanos , Neoplasias/radioterapia , Espécies Reativas de Oxigênio/metabolismo , Animais
4.
Radiat Res ; 201(2): 174-187, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329819

RESUMO

Resistance to radiation remains a significant clinical challenge in non-small cell lung carcinoma (NSCLC). It is therefore important to identify the underlying molecular and cellular features that drive acquired resistance. We generated genetically matched NSCLC cell lines to investigate characteristics of acquired resistance. Murine Lewis lung carcinoma (LLC) and human A549 cells acquired an approximate 1.5-2.5-fold increase in radiation resistance as compared to their parental match, which each had unique intrinsic radio-sensitivities. The radiation resistance (RR) was reflected in higher levels of DNA damage and repair marker γH2AX and reduced apoptosis induction after radiation. Morphologically, we found that radiation resistance A549 (A549-RR) cells exhibited a greater nucleus-to-cytosol (N/C) ratio as compared to its parental counterpart. Since the N/C ratio is linked to the differentiation state, we next investigated the epithelial-to-mesenchymal transition (EMT) phenotype and cellular plasticity. We found that A549 cells had a greater radiation-induced plasticity, as measured by E-cadherin, vimentin and double-positive (DP) modulation, as compared to LLC. Additionally, migration was suppressed in A549-RR cells, as compared to A549 cells. Subsequently, we confirmed in vivo that the LLC-RR and A549-RR cells are also more resistance to radiation than their isogenic-matched counterpart. Moreover, we found that the acquired radiation resistance also induced resistance to cisplatin, but not carboplatin or oxaliplatin. This cross-resistance was attributed to induced elevation of thiol levels. Gamma-glutamylcysteine synthetase inhibitor buthionine sulfoximine (BSO) sensitized the resistant cells to cisplatin by decreasing the amount of thiols to levels prior to obtaining acquired radiation resistance. By generating radiation-resistance genetically matched NSCLC we were able to identify and overcome cisplatin cross-resistance. This is an important finding arguing for combinatorial treatment regimens including glutathione pathway disruptors in patients with the potential of improving clinical outcomes in the future.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carboplatina , Butionina Sulfoximina/farmacologia , Butionina Sulfoximina/uso terapêutico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
5.
ACS Appl Mater Interfaces ; 15(50): 58241-58250, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38059477

RESUMO

Gold nanomaterials have been shown to augment radiation therapy both in vitro and in vivo. However, studies on these materials are mostly phenomenological due to nanoparticle heterogeneity and the complexity of biological systems. Even accurate quantification of the particle dose still results in bulk average biases; the effect on individual cells is not measured but rather the effect on the overall population. To perform quantitative nanobiology, we coated glass coverslips uniformly at varying densities with Au nanoparticle preparations with different morphologies (45 nm cages, 25 nm spheres, and 30 nm rods). Consequently, the effect of a specific number of particles per unit area in contact with breast cancer cells growing on the coated surfaces was ascertained. Gold nanocages showed the highest degree of radiosensitization on a per particle basis, followed by gold nanospheres and gold nanorods, respectively. All three materials showed little cytotoxic effect at 0 Gy, but clonogenic survival decreased proportionally with the radiation dose and particle coverage density. A similar trend was seen in vivo in the combined treatment antitumor response in 4T1 tumor-bearing animals. The presence of gold affected the type and quantity of reactive oxygen species generated, specifically superoxide and hydroxyl radicals, and the concentration of nanocages correlated with the development of more numerous double-stranded DNA breaks and increased protein oxidation as measured by carbonylation. This work demonstrates the dependence on morphology and concentration of radiation enhancement by gold nanomaterials and may lead to a novel method to differentiate intra- and extracellular functionalities of gold nanomedicine treatment strategies. It further provides insights that can guide the rational development of gold nanomaterial-based radiosensitizers for clinical use.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Radiossensibilizantes , Animais , Ouro/farmacologia , Ouro/metabolismo , Apoptose , Radiossensibilizantes/farmacologia
6.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685904

RESUMO

Infection with hepatitis B virus (HBV) is a main risk factor for hepatocellular carcinoma (HCC). Extracellular vesicles, such as exosomes, play an important role in tumor development and metastasis, including regulation of HBV-related HCC. In this study, we have characterized exosome microRNA and proteins released in vitro from hepatitis B virus (HBV)-related HCC cell lines SNU-423 and SNU-182 and immortalized normal hepatocyte cell lines (THLE2 and THLE3) using microRNA sequencing and mass spectrometry. Bioinformatics, including functional enrichment and network analysis, combined with survival analysis using data related to HCC in The Cancer Genome Atlas (TCGA) database, were applied to examine the prognostic significance of the results. More than 40 microRNAs and 200 proteins were significantly dysregulated (p < 0.05) in the exosomes released from HCC cells in comparison with the normal liver cells. The functional analysis of the differentially expressed exosomal miRNAs (i.e., mir-483, mir-133a, mir-34a, mir-155, mir-183, mir-182), their predicted targets, and exosomal differentially expressed proteins (i.e., POSTN, STAM, EXOC8, SNX9, COL1A2, IDH1, FN1) showed correlation with pathways associated with HBV, virus activity and invasion, exosome formation and adhesion, and exogenous protein binding. The results from this study may help in our understanding of the role of HBV infection in the development of HCC and in the development of new targets for treatment or non-invasive predictive biomarkers of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Vírus da Hepatite B , Neoplasias Hepáticas/genética , Hepatócitos
7.
Biochem Biophys Rep ; 34: 101463, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37125076

RESUMO

Mesenchymal stem cell (MSC) exosomes have been found to attenuate cardiac systolic and diastolic dysfunction in animal models of ischemia. Exosomes carry a plethora of active and inactive proteins as their cargo, which are readily available to the recipient cell for use in intracellular signaling pathways-depending on the stresses, such as ischemia or hypoxia. Among the exosomal proteins are the often-overlooked cargo of transcriptional regulators. These transcriptional regulators influence the transcriptome and subsequently the proteome of recipient cell. Here, we report the transcriptional factors and regulators differentially modulated and their potential role in modulating cardiac function in MSC exosome treated ischemic mice hearts. Our analysis shows ischemic stress modulating transcriptional regulators and factors such as HSF1 and HIF1A in the infarct and peri-infarct areas of ischemic hearts which is mitigated by MSC exosomes. Similarly, STAT3 and SMAD3 are also modulated by MSC exosomes. Interestingly, NOTCH1 and ß-catenin were detected in the ischemic hearts. The differential expression of these regulators and factors drives changes in various biological process governed in the ischemic cardiac cells. We believe these studies will advance our understanding of cardiac dysfunction occurring in the ischemic hearts and lay the groundwork for further studies on the modulation of cardiac function during ischemia by MSC exosomes.

8.
Angiogenesis ; 26(2): 279-293, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36459240

RESUMO

PURPOSE: Ongoing angiogenesis renders the tumor endothelium unresponsive to inflammatory cytokines and interferes with adhesion of leukocytes, resulting in escape from immunity. This process is referred to as tumor endothelial cell anergy. We aimed to investigate whether anti-angiogenic agents can overcome endothelial cell anergy and provide pro-inflammatory conditions. EXPERIMENTAL DESIGN: Tissues of renal cell carcinoma (RCC) patients treated with VEGF pathway-targeted drugs and control tissues were subject to RNAseq and immunohistochemical profiling of the leukocyte infiltrate. Analysis of adhesion molecule regulation in cultured endothelial cells, in a preclinical model and in human tissues was performed and correlated to leukocyte infiltration. RESULTS: It is shown that treatment of RCC patients with the drugs sunitinib or bevacizumab overcomes tumor endothelial cell anergy. This treatment resulted in an augmented inflammatory state of the tumor, characterized by enhanced infiltration of all major leukocyte subsets, including T cells, regulatory T cells, macrophages of both M1- and M2-like phenotypes and activated dendritic cells. In vitro, exposure of angiogenic endothelial cells to anti-angiogenic drugs normalized ICAM-1 expression. In addition, a panel of tyrosine kinase inhibitors was shown to increase transendothelial migration of both non-adherent and monocytic leukocytes. In primary tumors of RCC patients, ICAM-1 expression was found to be significantly increased in both the sunitinib and bevacizumab-treated groups. Genomic analysis confirmed the correlation between increased immune cell infiltration and ICAM-1 expression upon VEGF-targeted treatment. CONCLUSION: The results support the emerging concept that anti-angiogenic therapy can boost immunity and show how immunotherapy approaches can benefit from combination with anti-angiogenic compounds.


Assuntos
Inibidores da Angiogênese , Carcinoma de Células Renais , Células Endoteliais , Neoplasias Renais , Neovascularização Patológica , Humanos , Bevacizumab/imunologia , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/patologia , Endotélio/efeitos dos fármacos , Endotélio/imunologia , Endotélio/patologia , Molécula 1 de Adesão Intercelular/imunologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Sunitinibe/imunologia , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/imunologia , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Invasividade Neoplásica/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Inibidores da Angiogênese/imunologia , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico
9.
ACS Appl Bio Mater ; 5(11): 5347-5355, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36331934

RESUMO

In the present work, the immobilized footprint of ß-glucosidase (BGL) on silica-coated iron oxide was explored to produce reusable catalysts with flexible active sites for high activity and heightened storage stability. Synthesized iron oxide particles were coated with silica and functionalized with various densities of (3-aminopropyl)triethoxysilane (APTES) to obtain particles with amine densities ranging from 0 to 3 × 10-5 mol/g particle. The amine-modified particles were activated with glutaraldehyde, and subsequently, BGL was immobilized using either a 0.1 or 1 mg/mL enzyme solution to produce biomolecules with a large or small footprint on the particle surface. The initial activity, activity for subsequent hydrolysis cycles, activity after extended storage, and biomolecule footprint were studied as a function of APTES density and concentration of enzyme used for immobilization. At high immobilization amounts, the specific activity and footprint were reduced, but the immobilized biomolecules were stable during storage. However, at low enzyme immobilizations, the activity of the enzymes was retained, the immobilized enzymes adopted large footprints, and the storage stability increased with APTES density relative to the free enzyme. These results highlight how controlling both the protein load and functional group density can yield immobilized enzymes possessing high activity, which are stable during storage.


Assuntos
Nanopartículas de Magnetita , beta-Glucosidase , Enzimas Imobilizadas , Dióxido de Silício , Aminas
10.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36232973

RESUMO

Targeted delivery of drugs or other therapeutic agents through internal or external triggers has been used to control and accelerate the release from liposomal carriers in a number of studies, but relatively few utilize energy of therapeutic X-rays as a trigger. We have synthesized liposomes that are triggered by ionizing radiation (RTLs) to release their therapeutic payload. These liposomes are composed of natural egg phosphatidylethanolamine (PE), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and 1,2-disteroyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG-2000), and the mean size of the RTL was in the range of 114 to 133 nm, as measured by nanoparticle tracking analysis (NTA). The trigger mechanism is the organic halogen, chloral hydrate, which is known to generate free protons upon exposure to ionizing radiation. Once protons are liberated, a drop in internal pH of the liposome promotes destabilization of the lipid bilayer and escape of the liposomal contents. In proof of principle studies, we assessed RTL radiation-release of fluorescent tracers upon exposure to a low pH extracellular environment or exposure to X-ray irradiation. Biodistribution imaging before and after irradiation demonstrated a preferential uptake and release of the liposomes and their cargo at the site of local tumor irradiation. Finally, a potent metabolite of the commonly used chemotherapy irinotecan, SN-38, was loaded into RTL along with near infrared (NIR) fluorescent dyes for imaging studies and measuring tumor cell cytotoxicity alone or combined with radiation exposure, in vitro and in vivo. Fully loaded RTLs were found to increase tumor cell killing with radiation in vitro and enhance tumor growth delay in vivo after three IV injections combined with three, 5 Gy local tumor radiation exposures compared to either treatment modality alone.


Assuntos
Lipossomos , Neoplasias , Hidrato de Cloral , Colesterol/química , Corantes Fluorescentes , Halogênios , Humanos , Irinotecano , Bicamadas Lipídicas/química , Lipossomos/química , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Prótons , Distribuição Tecidual
11.
Nanomaterials (Basel) ; 11(5)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064443

RESUMO

Strategies to increase the proportion of neural stem cells that differentiate into neurons are vital for therapy of neurodegenerative disorders. In vitro, the extracellular matrix composition and topography have been found to be important factors in stem cell differentiation. We have developed a novel artificial extracellular matrix (aECM) formed by attaching gold nanocages (AuNCs) to glass coverslips. After culturing rat neural stem cells (rNSCs) on these gold nanocage-coated surfaces (AuNC-aECMs), we observed that 44.6% of rNSCs differentiated into neurons compared to only 27.9% for cells grown on laminin-coated glass coverslips. We applied laser irradiation to the AuNC-aECMs to introduce precise amounts of photothermally induced heat shock in cells. Our results showed that laser-induced thermal stimulation of AuNC-aECMs further enhanced neuronal differentiation (56%) depending on the laser intensity used. Response to these photothermal effects increased the expression of heat shock protein 27, 70, and 90α in rNSCs. Analysis of dendritic complexity showed that this thermal stimulation promoted neuronal maturation by increasing dendrite length as thermal dose was increased. In addition, we found that cells growing on AuNC-aECMs post laser irradiation exhibited action potentials and increased the expression of voltage-gated Na+ channels compared to laminin-coated glass coverslips. These results indicate that the photothermal response induced in cells growing on AuNC-aECMs can be used to produce large quantities of functional neurons, with improved electrochemical properties, that can potentially be transplanted into a damaged central nervous system to provide replacement neurons and restore lost function.

12.
Angiogenesis ; 24(3): 597-611, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33629198

RESUMO

Antibiotic-induced microbial imbalance, or dysbiosis, has systemic and long-lasting effects on the host and response to cancer therapies. However, the effects on tumor endothelial cells are largely unknown. Therefore, the goal of the current study was to generate matched B16-F10 melanoma associated endothelial cell lines isolated from mice with and without antibiotic-induced dysbiosis. After validating endothelial cell markers on a genomic and proteomic level, functional angiogenesis assays (i.e., migration and tube formation) also confirmed their vasculature origin. Subsequently, we found that tumor endothelial cells derived from dysbiotic mice (TEC-Dys) were more sensitive to ionizing radiotherapy in the range of clinically-relevant hypofractionated doses, as compared to tumor endothelial cells derived from orthobiotic mice (TEC-Ortho). In order to identify tumor vasculature-associated drug targets during dysbiosis, we used tandem mass tag mass spectroscopy and focused on the statistically significant cellular membrane proteins overexpressed in TEC-Dys. By these criteria c-Met was the most differentially expressed protein, which was validated histologically by comparing tumors with or without dysbiosis. Moreover, in vitro, c-Met inhibitors Foretinib, Crizotinib and Cabozantinib were significantly more effective against TEC-Dys than TEC-Ortho. In vivo, Foretinib inhibited tumor growth to a greater extent during dysbiosis as compared to orthobiotic conditions. Thus, we surmise that tumor response in dysbiotic patients may be greatly improved by targeting dysbiosis-induced pathways, such as c-Met, distinct from the many targets suppressed due to dysbiosis.


Assuntos
Disbiose , Células Endoteliais/enzimologia , Melanoma Experimental , Neovascularização Patológica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met , Animais , Disbiose/enzimologia , Disbiose/microbiologia , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/enzimologia , Melanoma Experimental/microbiologia , Melanoma Experimental/terapia , Camundongos , Neovascularização Patológica/enzimologia , Neovascularização Patológica/microbiologia , Neovascularização Patológica/terapia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Radioterapia
13.
Radiat Res ; 194(6): 688-697, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33348372

RESUMO

The combination of radiotherapy and immunotherapy may generate synergistic anti-tumor host immune responses and promote abscopal effects. Spatial fractionation of a radiation dose has been found to promote unique physiological responses of tumors, which might promote synergy with immunotherapy. To determine whether spatial fractionation may augment immune activity, whole-tumor or spatial fractionation grid radiation treatment (GRID) alone or in combination with antibodies against immune checkpoints PD1 and CTLA-4 were tested in an immunocompetent mouse model using a triple negative breast tumor (4T1). Tumor growth delay, immunohistochemistry and flow cytometry were used to characterize the effects of each treatment type. Whole-beam radiation with immune checkpoint inhibition significantly restrained tumor growth in the irradiated tumor, but not abscopal tumors, compared to either of these treatments alone. In mice that received spatially fractionated irradiation, evidence of abscopal immune responses were observed in contralateral tumors with markedly enhanced infiltration of both antigen-presenting cells and activated T cells, which were preceded by increased systemic IFNγ production and led to eventual tumor growth delay. These studies suggest that systemic immune activation may be triggered by employing GRID to a primary tumor lesion, promoting anti-tumor immune responses outside the treatment field. Interestingly, PD-L1 was found to be upregulated in abscopal tumors from GRID-treated mice. Combined radio-immunotherapy therapy is becoming a validated and novel approach in the treatment of cancer. With the potential increased benefit of GRID to augment both local and metastatic disease responses, further exploration of GRID treatment as a part of current standards of care is warranted.


Assuntos
Imunoterapia/métodos , Neoplasias Experimentais/terapia , Radioterapia/métodos , Animais , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/imunologia
14.
Cancer Res ; 79(23): 5999-6009, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31591154

RESUMO

The overall use of antibiotics has increased significantly in recent years. Besides fighting infections, antibiotics also alter the gut microbiota. Commensal bacteria in the gastrointestinal tract are crucial to maintain immune homeostasis, and microbial imbalance or dysbiosis affects disease susceptibility and progression. We hypothesized that antibiotic-induced dysbiosis of the gut microbiota would suppress cytokine profiles in the host, thereby leading to changes in the tumor microenvironment. The induced dysbiosis was characterized by alterations in bacterial abundance, composition, and diversity in our animal models. On the host side, antibiotic-induced dysbiosis caused elongated small intestines and ceca, and B16-F10 melanoma and Lewis lung carcinoma progressed more quickly than in control mice. Mechanistic studies revealed that this progression was mediated by suppressed TNFα levels, both locally and systemically, resulting in reduced expression of tumor endothelial adhesion molecules, particularly intercellular adhesion molecule-1 (ICAM-1) and a subsequent decrease in the number of activated and effector CD8+ T cells in the tumor. However, suppression of ICAM-1 or its binding site, the alpha subunit of lymphocyte function-associated antigen-1, was not seen in the spleen or thymus during dysbiosis. TNFα supplementation in dysbiotic mice was able to increase ICAM-1 expression and leukocyte trafficking into the tumor. Overall, these results demonstrate the importance of commensal bacteria in supporting anticancer immune surveillance, define an important role of tumor endothelial cells within this process, and suggest adverse consequences of antibiotics on cancer control. SIGNIFICANCE: Antibiotic-induced dysbiosis enhances distal tumor progression by altering host cytokine levels, resulting in suppression of tumor endothelial adhesion molecules and activated and effector CD8+ T cells in the tumor.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Lewis/imunologia , Disbiose/imunologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/imunologia , Animais , Antibacterianos/efeitos adversos , Carcinoma Pulmonar de Lewis/microbiologia , Carcinoma Pulmonar de Lewis/patologia , Progressão da Doença , Disbiose/induzido quimicamente , Endotélio/imunologia , Endotélio/metabolismo , Endotélio/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Molécula 1 de Adesão Intercelular/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Melanoma Experimental/microbiologia , Melanoma Experimental/patologia , Camundongos , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
15.
Nanotheranostics ; 3(2): 145-155, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31008023

RESUMO

A major challenge in photothermal treatment is generating sufficient heat to eradicate diseased tissue while sparing normal tissue. Au nanomaterials have shown promise as a means to achieve highly localized photothermal treatment. Toward that end, the synthetic peptide anginex was conjugated to Au nanocages. Anginex binds to galectin-1, which is highly expressed in dividing endothelial cells found primarily in the tumor vasculature. The skin surface temperature during a 10 min laser exposure of subcutaneous murine breast tumors did not exceed 43°C and no normal tissue damage was observed, yet a significant anti-tumor effect was observed when laser was applied 24 h post-injection of targeted nanocages. Untargeted particles showed little effect in immunocompetent, tumor-bearing mice under these conditions. Photoacoustic, photothermal, and ICP-MS mapping of harvested tissue showed distribution of particles near the vasculature throughout the tumor. This uptake pattern within the tumor combined with a minimal overall temperature rise were nonetheless sufficient to induce marked photothermal efficacy and evidence of tumor control. Importantly, this evidence suggests that bulk tumor temperature during treatment does not correlate with treatment outcome, which implies that targeted nanomedicine can be highly effective when closely bound/distributed in and around the tumor endothelium and extensive amounts of direct tumor cell binding may not be a prerequisite of effective photothermal approaches.


Assuntos
Sistemas de Liberação de Medicamentos , Ouro , Hipertermia Induzida , Nanopartículas Metálicas , Neoplasias Experimentais , Fototerapia , Animais , Linhagem Celular Tumoral , Feminino , Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia
16.
Cancer Res ; 79(8): 2054-2064, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30819665

RESUMO

Delay in the assessment of tumor response to radiotherapy continues to pose a major challenge to quality of life for patients with nonresponsive tumors. Here, we exploited label-free Raman spectroscopic mapping to elucidate radiation-induced biomolecular changes in tumors and uncovered latent microenvironmental differences between treatment-resistant and -sensitive tumors. We used isogenic radiation-resistant and -sensitive A549 human lung cancer cells and human head and neck squamous cell carcinoma (HNSCC) cell lines (UM-SCC-47 and UM-SCC-22B, respectively) to grow tumor xenografts in athymic nude mice and demonstrated the molecular specificity and quantitative nature of Raman spectroscopic tissue assessments. Raman spectra obtained from untreated and treated tumors were subjected to chemometric analysis using multivariate curve resolution-alternating least squares (MCR-ALS) and support vector machine (SVM) to quantify biomolecular differences in the tumor microenvironment. The Raman measurements revealed significant and reliable differences in lipid and collagen content postradiation in the tumor microenvironment, with consistently greater changes observed in the radiation-sensitive tumors. In addition to accurately evaluating tumor response to therapy, the combination of Raman spectral markers potentially offers a route to predicting response in untreated tumors prior to commencing treatment. Combined with its noninvasive nature, our findings provide a rationale for in vivo studies using Raman spectroscopy, with the ultimate goal of clinical translation for patient stratification and guiding adaptation of radiotherapy during the course of treatment. SIGNIFICANCE: These findings highlight the sensitivity of label-free Raman spectroscopy to changes induced by radiotherapy and indicate the potential to predict radiation resistance prior to commencing therapy.


Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias Pulmonares/patologia , Tolerância a Radiação , Análise Espectral Raman/métodos , Microambiente Tumoral/efeitos da radiação , Animais , Carcinoma de Células Escamosas/radioterapia , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Neoplasias Pulmonares/radioterapia , Camundongos , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
BMC Microbiol ; 18(1): 227, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591021

RESUMO

BACKGROUND: Here we investigated the influence of different stabilization and storage strategies on the quality and composition of the fecal microbial community. Namely, same-day isolated murine DNA was compared to samples stored for 1 month in air at ambient temperature, with or without preservative buffers (i.e. EDTA and lysis buffer), different temperatures (i.e. 4 °C, - 20 °C, and - 80 °C), and hypoxic conditions. RESULTS: Only storage in lysis buffer significantly reduced DNA content, yet without integrity loss. Storage in EDTA affected alpha diversity the most, which was also reflected in cluster separation. Distinct changes were also seen in the phyla and bacterial species abundance per storage strategy. Metabolic function analysis showed 22 pathways not significantly affected by storage conditions, whereas the tyrosine metabolism pathway was significantly changed in all strategies except by EDTA. CONCLUSION: Each long-term storage strategy introduced a unique post-collection bias, which is important to take into account when interpreting data.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Preservação Biológica/métodos , Animais , Bactérias/classificação , Bactérias/genética , Fezes/microbiologia , Camundongos , Manejo de Espécimes , Temperatura
18.
Biomed Opt Express ; 9(11): 5269-5279, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30460127

RESUMO

An improved technique for fractal characterization called the modified blanket method is introduced that can quantify surrounding fractal structures on a pixel by pixel basis without artifacts associated with scale-dependent image features such as object size. The method interprets images as topographical maps, obtaining information regarding the local surface area as a function of image resolution. Local fractal dimension (FD) can be quantified from the power law exponent derived from the surface area and image resolution relationship. We apply this technique on simulated cell images of known FD and compared the obtained values to power spectral density (PSD) analysis. Our method is sensitive to a wider FD range (2.0-4.5), having a mean error of 1.4% compared to 6% for PSD analysis. This increased sensitivity and an ability to compute regional FD properties enabled the discrimination of the differences in radiation resistant cancer cell responses that could not be detected using PSD analysis.

19.
Biomed Opt Express ; 9(8): 3794-3804, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30338156

RESUMO

There is a critical need to identify patients with radiation-resistant tumors early after treatment commencement. In this study, we use diffuse reflectance spectroscopy (DRS) to investigate changes in vascular oxygenation and total hemoglobin concentration in A549 radiation-sensitive and resistant tumors treated with a clinically relevant dose fraction of 2 Gy. DRS spectra were acquired before, immediately after, 24, and 48 hours after radiation. Our data reveals a significantly higher reoxygenation (sO2) in the radiation-resistant tumors 24 and 48h after treatment, and provides promising evidence that DRS can discern between the reoxygenation trends of radiation-sensitive and resistant tumors.

20.
Biochem Biophys Rep ; 14: 104-113, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29872742

RESUMO

Hypoxia, a hallmark characteristic of glioblastoma (GBM) induces changes in the transcriptome and the proteome of tumor cells. We discovered that hypoxic stress produces significant qualitative and quantitative changes in the protein content of secreted exosomes from GBM cells. Among the proteins found to be selectively elevated in hypoxic exosomes were protein-lysine 6-oxidase (LOX), thrombospondin-1 (TSP1), vascular derived endothelial factor (VEGF) and a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1), well studied contributors to tumor progression, metastasis and angiogenesis. Our findings demonstrate that hypoxic exosomes induce differential gene expression in recipient glioma cells. Glioma cells stimulated with hypoxic exosomes showed a marked upregulation of small nucleolar RNA, C/D box 116-21 (SNORD116-21) transcript among others while significantly downregulated the potassium voltage-gated channel subfamily J member 3 (KCNJ3) message. This differential expression of certain genes is governed by the protein cargo being transferred via exosomes. Additionally, compared to normoxic exosomes, hypoxic exosomes increased various angiogenic related parameters vis-à-vis, overall tube length, branching intervals and length of isolated branches studied in tube formation assay with endothelial progenitor cells (EPCs). Thus, the intercellular communication facilitated via exosomes secreted from hypoxic GBM cells induce marked changes in the expression of genes in neighboring normoxic tumor cells and possibly in surrounding stromal cells, many of which are involved in cancer progression and treatment resistance mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA