Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268458

RESUMO

ImportanceThere are limited data describing SARS-CoV-2-specific immune responses and their durability following infection and vaccination in nursing home residents. ObjectiveTo evaluate the quantitative titers and durability of binding antibodies detected after SARS-CoV-2 infection and subsequent COVID-19 vaccination. DesignA prospective longitudinal evaluation included nine visits over 150 days; visits included questionnaire administration, blood collection for serology, and paired anterior nasal specimen collection for testing by BinaxNOW COVID-19 Ag Card (BinaxNOW), reverse transcription polymerase chain reaction (RT-PCR), and viral culture. SettingA nursing home during and after a SARS-CoV-2 outbreak. Participants11 consenting SARS-CoV-2-positive nursing home residents. Main Outcomes and MeasuresSARS-CoV-2 testing (BinaxNOW, RT-PCR, viral culture); quantitative titers of binding SARS-CoV-2 antibodies post-infection and post-vaccination (beginning after the first dose of the primary series). ResultsOf 10 participants with post-infection serology results, 9 (90%) had detectable Pan-Ig, IgG, and IgA antibodies and 8 (80%) had detectable IgM antibodies. At first antibody detection post-infection, two-thirds (6/9, 67%) of participants were RT-PCR-positive but none were culture positive. Ten participants received vaccination; all had detectable Pan-Ig, IgG, and IgA antibodies through their final observation [≤]90 days post-first dose. Post-vaccination geometric means of IgG titers were 10-200-fold higher than post-infection. Conclusions and RelevanceNursing home residents in this cohort mounted robust immune responses to SARS-CoV-2 post-infection and post-vaccination. The augmented antibody responses post-vaccination are potential indicators of enhanced protection that vaccination may confer on previously infected nursing home residents.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21265796

RESUMO

BackgroundThe extent to which vaccinated persons who become infected with SARS-CoV-2 contribute to transmission is unclear. During a SARS-CoV-2 Delta variant outbreak among incarcerated persons with high vaccination rates in a federal prison, we assessed markers of viral shedding in vaccinated and unvaccinated persons. MethodsConsenting incarcerated persons with confirmed SARS-CoV-2 infection provided mid-turbinate nasal specimens daily for 10 consecutive days and reported symptom data via questionnaire. Real-time reverse transcription-polymerase chain reaction (RT-PCR), viral whole genome sequencing, and viral culture was performed on these nasal specimens. Duration of RT-PCR positivity and viral culture positivity was assessed using survival analysis. ResultsA total of 978 specimens were provided by 95 participants, of whom 78 (82%) were fully vaccinated and 17 (18%) were not fully vaccinated. No significant differences were detected in duration of RT-PCR positivity among fully vaccinated participants (median: 13 days) versus those not fully vaccinated (median: 13 days; p=0.50), or in duration of culture positivity (medians: 5 days and 5 days; p=0.29). Among fully vaccinated participants, overall duration of culture positivity was shorter among Moderna vaccine recipients versus Pfizer (p=0.048) or Janssen (p=0.003) vaccine recipients. ConclusionsAs this field continues to develop, clinicians and public health practitioners should consider vaccinated persons who become infected with SARS-CoV-2 to be no less infectious than unvaccinated persons. These findings are critically important, especially in congregate settings where viral transmission can lead to large outbreaks.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21259792

RESUMO

BackgroundPerformance characteristics of SARS-CoV-2 antigen tests among children are limited despite the need for point-of-care testing in school and childcare settings. We describe children seeking SARS-CoV-2 testing at a community site and compare antigen test performance to real-time reverse transcription-polymerase chain reaction (RT-PCR) and viral culture. MethodsTwo anterior nasal specimens were self-collected for BinaxNOW antigen and RT-PCR testing, along with demographics, symptoms, and exposure information from individuals [≥]5 years at a community testing site. Viral culture was attempted on residual antigen or RT-PCR positive specimens. Demographic and clinical characteristics, and the performance of SARS-CoV-2 antigen tests, were compared among children (<18 years) and adults. ResultsAbout one in ten included specimens were from children (225/2110); 16.4% (37/225) were RT-PCR positive. Cycle threshold values were similar among RT-PCR positive specimens from children and adults (22.5 vs 21.3, p=0.46) and among specimens from symptomatic and asymptomatic children (22.5 vs 23.2, p=0.39). Sensitivity of antigen test compared to RT-PCR was 73.0% (27/37) among specimens from children and 80.8% (240/297) among specimens from adults; among specimens from children, specificity was 100% (188/188), positive and negative predictive value were 100% (27/27) and 94.9% (188/198) respectively. Virus was isolated from 51.4% (19/37) of RT-PCR positive pediatric specimens; all 19 had positive antigen test results. ConclusionsWith lower sensitivity relative to RT-PCR, antigen tests may not diagnose all positive COVID-19 cases; however, antigen testing identified children with live SARS-CoV-2 virus.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-338095

RESUMO

The need for high-affinity, SARS-CoV-2-specific monoclonal antibodies (mAbs) is critical in the face of the global COVID-19 pandemic, as such reagents can have important diagnostic, research, and therapeutic applications. Of greatest interest is the ~300 amino acid receptor binding domain (RBD) within the S1 subunit of the spike protein because of its key interaction with the human angiotensin converting enzyme 2 (hACE2) receptor present on many cell types, especially lung epithelial cells. We report here the development and functional characterization of 29 nanomolar-affinity mouse SARS-CoV-2 mAbs created by an accelerated immunization and hybridoma screening process. Differing functions, including binding of diverse protein epitopes, viral neutralization, impact on RBD-hACE2 binding, and immunohistochemical staining of infected lung tissue, were correlated with variable gene usage and sequence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA