Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Peptides ; 177: 171210, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38579917

RESUMO

Recent advancements in understanding glucagon-like peptide 2 (GLP-2) biology and pharmacology have sparked interest in targeting the GLP-2 receptor (GLP-2R) in the treatment of obesity. GLP-2 is a proglucagon-derived 33-amino acid peptide co-secreted from enteroendocrine L cells along with glucagon-like peptide 1 (GLP-1) and has a range of actions via the GLP-2R, which is particularly expressed in the gastrointestinal tract, the liver, adipose tissue, and the central nervous system (CNS). In humans, GLP-2 evidently induces intestinotrophic effects (i.e., induction of intestinal mucosal proliferation and improved gut barrier function) and promotes mesenteric blood flow. However, GLP-2 does not seem to have appetite or food intake-reducing effects in humans, but its gut barrier-promoting effect may be of interest in the context of obesity. Obesity is associated with reduced gut barrier function, increasing the translocation of proinflammatory gut content to the circulation. This phenomenon constitutes a strong driver of obesity-associated systemic low-grade inflammation, which in turn plays a major role in the development of most obesity-associated complications. Thus, the intestinotrophic and gut barrier-improving effect of GLP-2, which in obese rodent models shows strong anti-inflammatory potential, may, in combination with food intake-reducing strategies, e.g., GLP-1 receptor (GLP-1) agonism, be able to rectify core pathophysiological mechanism of obesity. Here, we provide an overview of GLP-2 physiology in the context of obesity pathophysiology and review the pharmacological potential of GLP-2R activation in the management of obesity and related comorbidities.

2.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37762180

RESUMO

Obesity and metabolic comorbidities are associated with gut permeability. While high-fructose and Western-style diet (WSD) disrupt intestinal barrier function, oral administration of human α-defensin 5 (HD5) and ß-defensin 2 (hBD2) is believed to improve intestinal integrity and metabolic disorders. Eighty-four male C57BL/6J mice were fed a WSD or a control diet (CD) ± fructose (F) for 18 weeks. In week 13, mice were randomly divided into three intervention groups, receiving defensin fragment HD51-9, full-length hBD2, or bovine serum albumin (BSA)-control for six weeks. Subsequently, parameters of hepatic steatosis, glucose metabolism, and gut barrier function were assessed. WSDF increased body weight and hepatic steatosis (p < 0.01) compared to CD-fed mice, whereas peptide intervention decreased liver fat (p < 0.05) and number of hepatic lipid droplets (p < 0.01) compared to BSA-control. In addition, both peptides attenuated glucose intolerance by reducing blood glucose curves in WSDF-fed mice. Evaluation of gut barrier function revealed that HD51-9 and hBD2 improve intestinal integrity by upregulating tight junction and mucin expression. Moreover, peptide treatment restored ileal host defense peptides (HDP) expression, likely by modulating the Wnt, Myd88, p38, and Jak/STAT pathways. These findings strongly suggest that α- and ß-defensin treatment improve hepatic steatosis, glucose metabolism, and gut barrier function.

3.
Gut Microbes ; 15(1): 2192547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36945120

RESUMO

Growing evidence supports the use of probiotics to prevent or mitigate obesity-related dysmetabolism and non-alcoholic fatty liver disease (NAFLD). However, frequent reports of responders versus non-responders to probiotic treatment warrant a better understanding of key modifiers of host-microbe interactions. The influence of host diet on probiotic efficacy, in particular against metabolic diseases, remains elusive. We fed C57BL6/J mice a low fat reference diet or one of two energy-matched high fat and high sucrose diets for 12 weeks; a classical high fat diet (HFD) and a customized fast food-mimicking diet (FFMD). During the studies, mice fed either obesogenic diet were gavaged daily with one of two probiotic lactic acid bacteria (LAB) strains previously classified as Lactobaccillus, namely Limosilactobacillus reuteri (L. reuteri)or Lacticaseibacillus paracaseisubsp. paracasei (L. paracasei), or vehicle. The tested probiotics exhibited a reproducible efficacy but dichotomous response according to the obesogenic diets used. Indeed, L. paracaseiprevented weight gain, improved insulin sensitivity, and protected against NAFLD development in mice fed HFD, but not FFMD. Conversely, L. reuteri improved glucoregulatory capacity, reduced NAFLD development, and increased distal gut bile acid levels associated with changes in predicted functions of the gut microbiota exclusively in the context of FFMD-feeding. We found that the probiotic efficacy of two LAB strains is highly dependent on experimental obesogenic diets. These findings highlight the need to carefully consider the confounding impact of diet in order to improve both the reproducibility of preclinical probiotic studies and their clinical research translatability.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Probióticos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Reprodutibilidade dos Testes , Obesidade/microbiologia , Probióticos/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
4.
Sci Transl Med ; 14(676): eabp9675, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542690

RESUMO

Acute graft-versus-host disease (aGVHD), which is driven by allogeneic T cells, has a high mortality rate and limited treatment options. Human ß-defensin 2 (hBD-2) is an endogenous epithelial cell-derived host-defense peptide. In addition to its antimicrobial effects, hBD-2 has immunomodulatory functions thought to be mediated by CCR2 and CCR6 in myeloid cells. In this study, we analyzed the effect of recombinant hBD-2 on aGVHD development. We found that intestinal ß-defensin expression was inadequately induced in response to inflammation in two independent cohorts of patients with aGVHD and in a murine aGVHD model. Treatment of mice with hBD-2 reduced GVHD severity and mortality and modulated the intestinal microbiota composition, resulting in reduced neutrophil infiltration in the ileum. Furthermore, hBD-2 treatment decreased proliferation and proinflammatory cytokine production by allogeneic T cells in vivo while preserving the beneficial graft-versus-leukemia effect. Using transcriptome and kinome profiling, we found that hBD-2 directly dampened primary murine and human allogeneic T cell proliferation, activation, and metabolism in a CCR2- and CCR6-independent manner by reducing proximal T cell receptor signaling. Furthermore, hBD-2 treatment diminished alloreactive T cell infiltration and the expression of genes involved in T cell receptor signaling in the ilea of mice with aGVHD. Together, we found that both human and murine aGVHD were characterized by a lack of intestinal ß-defensin induction and that recombinant hBD-2 represents a potential therapeutic strategy to counterbalance endogenous hBD-2 deficiency.


Assuntos
Doença Enxerto-Hospedeiro , beta-Defensinas , Humanos , Animais , Camundongos , beta-Defensinas/genética , beta-Defensinas/metabolismo , beta-Defensinas/farmacologia , Infiltração de Neutrófilos , Íleo , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/genética , Receptores de Antígenos de Linfócitos T
5.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L37-L47, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35638643

RESUMO

Treatment of the cigarette smoke-associated lung diseases, such as chronic obstructive pulmonary disease (COPD), has largely focused on broad-spectrum anti-inflammatory therapies. However, these therapies, such as high-dose inhaled corticosteroids, enhance patient susceptibility to lung infection and exacerbation. Our objective was to assess whether the cationic host defense peptide, human ß-defensin 2 (hBD-2), can simultaneously reduce pulmonary inflammation in cigarette smoke-exposed mice while maintaining immune competence during bacterial exacerbation. Mice were exposed to cigarette smoke acutely (4 days) or chronically (5 days/wk for 7 wk) and administered hBD-2 intranasally or by gavage. In a separate model of acute exacerbation, chronically exposed mice treated with hBD-2 were infected with nontypeable Haemophilus influenzae before euthanasia. In the acute exposure model, cigarette smoke-associated pulmonary neutrophilia was significantly blunted by both local and systemic hBD-2 administration. Similarly, chronically exposed mice administered hBD-2 therapeutically exhibited reduced pulmonary neutrophil infiltration and downregulated proinflammatory signaling in the lungs compared with vehicle-treated mice. Finally, in a model of acute bacterial exacerbation, hBD-2 administration effectively limited neutrophil infiltration in the lungs while markedly reducing pulmonary bacterial load. This study shows that hBD-2 treatment can significantly attenuate lung neutrophilia induced by cigarette smoke exposure while preserving immune competence and promoting an appropriate host-defense response to bacterial stimuli.


Assuntos
Pneumonia , Doença Pulmonar Obstrutiva Crônica , beta-Defensinas , Animais , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Fumar , beta-Defensinas/farmacologia
6.
Gastroenterol Rep (Oxf) ; 10(1): goac008, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291443

RESUMO

Organismal survival depends on a well-balanced immune system and maintenance of host-microbe mutualism. The fine-tuned relationship between the gut microbiota and host immunity is constantly challenged by opportunistic bacteria testing the integrity of gastrointestinal (GI) barrier defenses. Barrier dysfunction reduces immunological tolerance towards otherwise innocuous microbes; it is a process that may instigate chronic inflammation. Paradoxically, sustained inflammation further diminishes barrier function, enabling bacterial translocation to extra-intestinal tissues. Once translocated, these bacteria stimulate systemic inflammation, thereby compromising organ function. While genetic risk alleles associate with barrier dysfunction, environmental stressors are key triggers of GI inflammation and associated breakdown in immune tolerance towards resident gut microbes. As dietary components dictate substrate availability, they also orchestrate microbiota composition and function, including migratory and pro-inflammatory potential, thus holding the capacity to fuel both GI and extra-intestinal inflammation. Additionally, Western diet consumption may weaken barrier defenses via curbed Paneth cell function and diminished host-defense peptide secretion. This review focuses on intervenable niches of host-microbe interactions and mucosal immunity with the ambition to provide a framework of plausible strategies to improve barrier function and regain tolerance in the inflamed mucosa via nutritional intervention.

7.
Gut Microbes ; 13(1): 1988836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34693864

RESUMO

Colitis is characterized by colonic inflammation and impaired gut health. Both features aggravate obesity and insulin resistance. Host defense peptides (HDPs) are key regulators of gut homeostasis and generally malfunctioning in above-mentioned conditions. We aimed here to improve bowel function in diet-induced obesity and chemically induced colitis through daily oral administration of lysozyme, a well-characterized HDP, derived from Acremonium alcalophilum.C57BL6/J mice were fed either low-fat reference diet or HFD ± daily gavage of lysozyme for 12 weeks, followed by metabolic assessment and evaluation of colonic microbiota encroachment. To further evaluate the efficacy of intestinal inflammation, we next supplemented chow-fed BALB/c mice with lysozyme during Dextran Sulfate Sodium (DSS)-induced colitis in either conventional or microbiota-depleted mice. We assessed longitudinal microbiome alterations by 16S amplicon sequencing in both models.Lysozyme dose-dependently alleviated intestinal inflammation in DSS-challenged mice and further protected against HFD-induced microbiota encroachment and fasting hyperinsulinemia. Observed improvements of intestinal health relied on a complex gut flora, with the observation that microbiota depletion abrogated lysozyme's capacity to mitigate DSS-induced colitis.Akkermansia muciniphila associated with impaired gut health in both models, a trajectory that was mitigated by lysozyme administration. In agreement with this notion, PICRUSt2 analysis revealed specific pathways consistently affected by lysozyme administration, independent of vivarium, disease model and mouse strain.Taking together, lysozyme leveraged the gut microbiota to curb DSS-induced inflammation, alleviated HFD-induced gastrointestinal disturbances and lowered fasting insulin levels in obese mice. Collectively, these data present A. alcalophilum-derived lysozyme as a promising candidate to enhance gut health.


Assuntos
Acremonium/enzimologia , Colite/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Muramidase/administração & dosagem , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Colite/induzido quimicamente , Colite/microbiologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Muramidase/metabolismo
8.
J Lipid Atheroscler ; 10(2): 123-129, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34095007

RESUMO

Gut microbes dictate critical features of host immunometabolism. Certain bacterial components and metabolites (termed postbiotics) mitigate cardiometabolic diseases whereas others potentiate pathological processes. In this review, we discuss key aspects related to the usefulness of bacterial-related molecules strategically positioned as promising treatment strategies for cardiometabolic diseases.

10.
FASEB J ; 35(5): e21559, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33835594

RESUMO

Diabetic nephropathy (DN) remains the major cause of end-stage renal disease (ESRD). We used high-fat/high-sucrose (HFHS)-fed LDLr-/- /ApoB100/100 mice with transgenic overexpression of IGFII in pancreatic ß-cells (LRKOB100/IGFII) as a model of ESRD to test whether dietary long chain omega-3 polyunsaturated fatty acids LCω3FA-rich fish oil (FO) could prevent ESRD development. We further evaluated the potential of docosahexaenoic acid (DHA)-derived pro-resolving lipid mediators, 17-hydroxy-DHA (17-HDHA) and Protectin DX (PDX), to reverse established ESRD damage. HFHS-fed vehicle-treated LRKOB100/IGFII mice developed severe kidney dysfunction leading to ESRD, as revealed by advanced glomerular fibrosis and mesangial expansion along with reduced percent survival. The kidney failure outcome was associated with cardiac dysfunction, revealed by reduced heart rate and prolonged diastolic and systolic time. Dietary FO prevented kidney damage, lean mass loss, cardiac dysfunction, and death. 17-HDHA reduced podocyte foot process effacement while PDX treatment alleviated kidney fibrosis and mesangial expansion as compared to vehicle treatment. Only PDX therapy was effective at preserving the heart function and survival rate. These results show that dietary LCω3FA intake can prevent ESRD and cardiac dysfunction in LRKOB100/IGFII diabetic mice. Our data further reveals that PDX can protect against renal failure and cardiac dysfunction, offering a potential new therapeutic strategy against ESRD.


Assuntos
Aterosclerose/complicações , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/tratamento farmacológico , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/administração & dosagem , Óleos de Peixe/administração & dosagem , Falência Renal Crônica/tratamento farmacológico , Animais , Apolipoproteína B-100/fisiologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Falência Renal Crônica/etiologia , Falência Renal Crônica/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/fisiologia
11.
Front Immunol ; 12: 636061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717182

RESUMO

Asthma and allergies are complex, chronic inflammatory diseases in which genetic and environmental factors are crucial. Protection against asthma and allergy development in the context of farming environment is established by early animal contact, unpasteurized milk consumption and gut microbiota maturation. The human ß-defensin 2 (hBD-2) is a host defense peptide present almost exclusively in epithelial tissues, with pronounced immunomodulatory properties, which has recently been shown to ameliorate asthma and IBD in animal models. We hypothesized that adequate hBD-2 secretion plays a role in the protection against asthma and allergy development and that genetic variations in the complex gene locus coding for hBD-2 may be a risk factor for developing these diseases, if as a consequence, hBD-2 is insufficiently produced. We used MALDI-TOF MS genotyping, sequencing and a RFLP assay to study the genetic variation including mutations, polymorphisms and copy number variations in the locus harboring both genes coding for hBD-2 (DEFB4A and DEFB4B). We administered hBD-2 orally in a mouse model of house dust mite (HDM)-asthma before allergy challenge to explore its prophylactic potential, thereby mimicking a protective farm effect. Despite the high complexity of the region harboring DEFB4A and DEFB4B we identified numerous genetic variants to be associated with asthma and allergy in the GABRIELA Ulm population of 1,238 children living in rural areas, including rare mutations, polymorphisms and a lack of the DEFB4A. Furthermore, we found that prophylactic oral administration of hBD-2 significantly curbed lung resistance and pulmonary inflammation in our HDM mouse model. These data indicate that inadequate genetic capacity for hBD-2 is associated with increased asthma and allergy risk while adequate and early hBD-2 administration (in a mouse model) prevents atopic asthma. This suggests that hBD-2 could be involved in the protective farm effect and may be an excellent candidate to confer protection against asthma development.


Assuntos
Antiasmáticos/farmacologia , Asma/genética , Asma/prevenção & controle , Hipersensibilidade/genética , Hipersensibilidade/prevenção & controle , Pulmão/efeitos dos fármacos , Mutação , beta-Defensinas/genética , beta-Defensinas/farmacologia , Animais , Asma/imunologia , Asma/metabolismo , Broncoconstrição/efeitos dos fármacos , Estudos de Casos e Controles , Criança , Citocinas/metabolismo , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Feminino , Dosagem de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Fenótipo , Polimorfismo de Nucleotídeo Único
12.
Nat Commun ; 12(1): 1093, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597537

RESUMO

Interactions between host and gut microbial communities are modulated by diets and play pivotal roles in immunological homeostasis and health. We show that exchanging the protein source in a high fat, high sugar, westernized diet from casein to whole-cell lysates of the non-commensal bacterium Methylococcus capsulatus Bath is sufficient to reverse western diet-induced changes in the gut microbiota to a state resembling that of lean, low fat diet-fed mice, both under mild thermal stress (T22 °C) and at thermoneutrality (T30 °C). Concomitant with microbiota changes, mice fed the Methylococcus-based western diet exhibit improved glucose regulation, reduced body and liver fat, and diminished hepatic immune infiltration. Intake of the Methylococcu-based diet markedly boosts Parabacteroides abundances in a manner depending on adaptive immunity, and upregulates triple positive (Foxp3+RORγt+IL-17+) regulatory T cells in the small and large intestine. Collectively, these data point to the potential for leveraging the use of McB lysates to improve immunometabolic homeostasis.


Assuntos
Intestino Grosso/imunologia , Intestino Delgado/imunologia , Methylococcus capsulatus/imunologia , Microbiota/imunologia , Proteínas/imunologia , Linfócitos T Reguladores/imunologia , Animais , Dieta , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Homeostase/imunologia , Interleucina-17/imunologia , Interleucina-17/metabolismo , Intestino Grosso/metabolismo , Intestino Grosso/microbiologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Masculino , Methylococcus capsulatus/química , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Obesidade/imunologia , Proteínas/metabolismo , Linfócitos T Reguladores/metabolismo
13.
Commun Biol ; 4(1): 47, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420317

RESUMO

The occurrence and spread of multidrug-resistant pathogens, especially bacteria from the ESKAPE panel, increases the risk to succumb to untreatable infections. We developed a novel antimicrobial peptide, Pam-3, with antibacterial and antibiofilm properties to counter this threat. The peptide is based on an eight-amino acid carboxyl-terminal fragment of human ß-defensin 1. Pam-3 exhibited prominent antimicrobial activity against multidrug-resistant ESKAPE pathogens and additionally eradicated already established biofilms in vitro, primarily by disrupting membrane integrity of its target cell. Importantly, prolonged exposure did not result in drug-resistance to Pam-3. In mouse models, Pam-3 selectively reduced acute intestinal Salmonella and established Citrobacter infections, without compromising the core microbiota, hence displaying an added benefit to traditional broad-spectrum antibiotics. In conclusion, our data support the development of defensin-derived antimicrobial agents as a novel approach to fight multidrug-resistant bacteria, where Pam-3 appears as a particularly promising microbiota-preserving candidate.


Assuntos
Infecções por Enterobacteriaceae/tratamento farmacológico , Gastroenteropatias/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Salmonelose Animal/tratamento farmacológico , Animais , Biofilmes/efeitos dos fármacos , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla , Feminino , Masculino , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana
14.
Front Physiol ; 12: 812882, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153819

RESUMO

Alcohol-associated liver disease (ALD) is a prevalent liver disorder and significant global healthcare burden with limited effective therapeutic options. The gut-liver axis is a critical factor contributing to susceptibility to liver injury due to alcohol consumption. In the current study, we tested whether human beta defensin-2 (hBD-2), a small anti-microbial peptide, attenuates experimental chronic ALD. Male C57Bl/6J mice were fed an ethanol (EtOH)-containing diet for 6 weeks with daily administration of hBD-2 (1.2 mg/kg) by oral gavage during the final week. Two independent cohorts of mice with distinct baseline gut microbiota were used. Oral hBD-2 administration attenuated liver injury in both cohorts as determined by decreased plasma ALT activity. Notably, the degree of hBD-2-mediated reduction of EtOH-associated liver steatosis, hepatocellular death, and inflammation was different between cohorts, suggesting microbiota-specific mechanisms underlying the beneficial effects of hBD-2. Indeed, we observed differential mechanisms of hBD-2 between cohorts, which included an induction of hepatic and small intestinal IL-17A and IL-22, as well as an increase in T regulatory cell abundance in the gut and mesenteric lymph nodes. Lastly, hBD-2 modulated the gut microbiota composition in EtOH-fed mice in both cohorts, with significant decreases in multiple genera including Barnesiella, Parabacteroides, Akkermansia, and Alistipes, as well as altered abundance of several bacteria within the family Ruminococcaceae. Collectively, our results demonstrated a protective effect of hBD-2 in experimental ALD associated with immunomodulation and microbiota alteration. These data suggest that while the beneficial effects of hBD-2 on liver injury are uniform, the specific mechanisms of action are associated with baseline microbiota.

15.
Clin Exp Allergy ; 51(1): 120-131, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098152

RESUMO

BACKGROUND: Asthma is an airway inflammatory disease and a major health problem worldwide. Anti-inflammatory steroids and bronchodilators are the gold-standard therapy for asthma. However, they do not prevent the development of the disease, and critically, a subset of asthmatics are resistant to steroid therapy. OBJECTIVE: To elucidate the therapeutic potential of human ß-defensins (hBD), such as hBD2 mild to moderate and severe asthma. METHODS: We investigated the role of hBD2 in a steroid-sensitive, house dust mite-induced allergic airways disease (AAD) model and a steroid-insensitive model combining ovalbumin-induced AAD with C muridarum (Cmu) respiratory infection. RESULTS: In both models, we demonstrated that therapeutic intranasal application of hBD2 significantly reduced the influx of inflammatory cells into the bronchoalveolar lavage fluid. Furthermore, key type 2 asthma-related cytokines IL-9 and IL-13, as well as additional immunomodulating cytokines, were significantly decreased after administration of hBD2 in the steroid-sensitive model. The suppression of inflammation was associated with improvements in airway physiology and treatment also suppressed airway hyper-responsiveness (AHR) in terms of airway resistance and compliance to methacholine challenge. CONCLUSIONS AND CLINICAL RELEVANCE: These data indicate that hBD2 reduces the hallmark features and has potential as a new therapeutic agent in allergic and especially steroid-resistant asthma.


Assuntos
Resistência das Vias Respiratórias/efeitos dos fármacos , Asma/metabolismo , Interleucina-13/metabolismo , Interleucina-9/metabolismo , Complacência Pulmonar/efeitos dos fármacos , Pulmão/efeitos dos fármacos , beta-Defensinas/farmacologia , Animais , Asma/fisiopatologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/fisiopatologia , Chlamydia muridarum , Modelos Animais de Doenças , Inflamação/metabolismo , Inflamação/fisiopatologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Camundongos , Ovalbumina , Pyroglyphidae , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/fisiopatologia , Infecções Respiratórias/metabolismo , Infecções Respiratórias/fisiopatologia
16.
Front Microbiol ; 11: 1147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582092

RESUMO

The occurrence and spread of multidrug-resistant bacteria is a prominent health concern. To curb this urgent threat, new innovative strategies pursuing novel antimicrobial agents are of the utmost importance. Here, we unleashed the antimicrobial activity of human neutrophil peptide-4 (HNP-4) by tryptic digestion. We identified a single 11 amino acid long fragment (HNP-41 - 11) with remarkable antimicrobial potential, exceeding that of the full length peptide on both mass and molar levels. Importantly, HNP-41 - 11 was equally bactericidal against multidrug-resistant and non-resistant strains; a potency that was further enhanced by N- and C-terminus modifications (acetylation and amidation, respectively). These observations, combined with negligible cytotoxicity not exceeding that of the full length peptide, presents proteolytic digestion of innate host-defense-peptides as a novel strategy to overcome the current health crisis related to antibiotic-resistant bacteria.

17.
Atherosclerosis ; 304: 9-21, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32563005

RESUMO

BACKGROUND AND AIMS: Poor dietary habits contribute to the obesity pandemic and related cardiovascular diseases but the respective impact of high saturated fat versus added sugar consumption remains debated. Herein, we aimed to disentangle the individual role of dietary fat versus sugar in cardiometabolic disease progression. METHODS: We fed pro-atherogenic LDLr-/-ApoB100/100 mice either a low-fat/high-sucrose (LFHS) or a high-fat/low-sucrose (HFLS) diet for 24 weeks. Weekly body weight gain was registered. 16S rRNA gene-based gut microbial analysis was performed to investigate gut microbial modulations. Intraperitoneal insulin (ipITT) and oral glucose tolerance test (oGTT) were conducted to assess glucose homeostasis and insulin sensitivity. Cytokines were assessed in fasted plasma, epididymal white adipose tissue and liver lysates. Heart function was evaluated by echocardiography. Aortic atheroma lesions were quantified according to the en face technique. RESULTS: HFLS feeding increased obesity, insulin resistance and dyslipidemia compared to LFHS feeding. Conversely, high sucrose consumption decreased gut microbial diversity while augmenting inflammation and the adaptative immune defense against metabolic endotoxemia and reduced macrophage cholesterol efflux capacity. This led to more severe cardiovascular complications as revealed by remarkably high level of atherosclerotic lesions and the early development of cardiac dysfunction in LFHS vs HFLS fed mice. CONCLUSIONS: We uncoupled obesity-associated insulin resistance from cardiovascular diseases and provided novel evidence that dietary sucrose, not fat, is the main driver of metabolic inflammation accelerating severe atherosclerosis in hyperlipidemic mice.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Sacarose Alimentar/efeitos adversos , Inflamação , Resistência à Insulina , Animais , Apolipoproteína B-100 , Dieta Hiperlipídica , Gorduras na Dieta/efeitos adversos , Microbioma Gastrointestinal , Hiperlipidemias , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Ribossômico 16S
18.
Front Immunol ; 11: 93, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32076420

RESUMO

Defensins represents an integral part of the innate immune system serving to ward off potential pathogens and to protect the intestinal barrier from microbial encroachment. In addition to their antimicrobial activities, defensins in general, and human ß-defensin 2 (hBD2) in particular, also exhibit immunomodulatory capabilities. In this report, we assessed the therapeutic efficacy of systemically administered recombinant hBD2 to ameliorate intestinal inflammation in three distinct animal models of inflammatory bowel disease; i.e., chemically induced mucosal injury (DSS), loss of mucosal tolerance (TNBS), and T-cell transfer into immunodeficient recipient mice. Treatment efficacy was confirmed in all tested models, where systemically administered hBD2 mitigated inflammation, improved disease activity index, and hindered colitis-induced body weight loss on par with anti-TNF-α and steroids. Treatment of lipopolysaccharide (LPS)-activated human peripheral blood mononuclear cells with rhBD2 confirmed the immunomodulatory capacity in the circulatory compartment. Subsequent analyzes revealed dendritic cells (DCs) as the main target population. Suppression of LPS-induced inflammation was dependent on chemokine receptor 2 (CCR2) expression. Mechanistically, hBD2 engaged with CCR2 on its DC target cell to decrease NF-κB, and increase CREB phosphorylation, hence curbing inflammation. To our knowledge, this is the first study showing in vivo efficacy of a systemically administered defensin in experimental disease.


Assuntos
Colite/imunologia , Imunomodulação/imunologia , beta-Defensinas/farmacologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas Recombinantes/farmacologia
20.
Cell Metab ; 29(1): 50-63.e4, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30269983

RESUMO

Prolonged intervention studies investigating molecular metabolism are necessary for a deeper understanding of dietary effects on health. Here we provide mechanistic information about metabolic adaptation to fat-rich diets. Healthy, slightly overweight men ingested saturated or polyunsaturated fat-rich diets for 6 weeks during weight maintenance. Hyperinsulinemic clamps combined with leg balance technique revealed unchanged peripheral insulin sensitivity, independent of fatty acid type. Both diets increased fat oxidation potential in muscle. Hepatic insulin clearance increased, while glucose production, de novo lipogenesis, and plasma triacylglycerol decreased. High fat intake changed the plasma proteome in the immune-supporting direction and the gut microbiome displayed changes at taxonomical and functional level with polyunsaturated fatty acid (PUFA). In mice, eucaloric feeding of human PUFA and saturated fatty acid diets lowered hepatic triacylglycerol content compared with low-fat-fed control mice, and induced adaptations in the liver supportive of decreased gluconeogenesis and lipogenesis. Intake of fat-rich diets thus induces extensive metabolic adaptations enabling disposition of dietary fat without metabolic complications.


Assuntos
Glicemia , Gorduras Insaturadas na Dieta/metabolismo , Ácidos Graxos/metabolismo , Insulina/sangue , Fígado/metabolismo , Músculos/metabolismo , Animais , Dieta Hiperlipídica/métodos , Gluconeogênese , Glucose/metabolismo , Voluntários Saudáveis , Humanos , Resistência à Insulina , Lipogênese , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...