Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
EJNMMI Radiopharm Chem ; 9(1): 43, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775973

RESUMO

BACKGROUND: A significant challenge in cancer therapy lies in eradicating hidden disseminated tumor cells. Within Nuclear Medicine, Targeted Alpha Therapy is a promising approach for cancer treatment tackling disseminated cancer. As tumor size decreases, alpha-particles gain prominence due to their high Linear Energy Transfer (LET) and short path length. Among alpha-particle emitters, 211At stands out with its 7.2 hour half-life and 100% alpha emission decay. However, optimizing the pharmacokinetics of radiopharmaceuticals with short lived radionuclides such as 211At is pivotal, and in this regard, pretargeting is a valuable tool. This method involves priming the tumor with a modified monoclonal antibody capable of binding both the tumor antigen and the radiolabeled carrier, termed the "effector molecule. This smaller, faster-clearing molecule improves efficacy. Utilizing the Diels Alder click reaction between Tetrazine (Tz) and Trans-cyclooctene (TCO), the Tz-substituted effector molecule combines seamlessly with the TCO-modified antibody. This study aims to evaluate the in vivo biodistribution of two Poly-L-Lysine-based effector molecule sizes (10 and 21 kDa), labelled with 211At, and the in vitro binding of the most favorable polymer size, in order to optimize the pretargeted radioimmunotherapy with 211At. RESULTS: In vivo results favor the smaller polymer's biodistribution pattern over the larger one, which accumulates in organs like the liver and spleen. This is especially evident when comparing the biodistribution of the smaller polymer to a directly labelled monoclonal antibody. The smaller variant also shows rapid and efficient binding to SKOV-3 cells preloaded with TCO-modified Trastuzumab in vitro, emphasizing its potential. Both polymer sizes showed equal or better in vivo stability of the astatine-carbon bond compared to a monoclonal antibody labelled with the same prosthetic group. CONCLUSIONS: Overall, the small Poly-L-Lysine-based effector molecule (10 kDa) holds the most promise for future research, exhibiting significantly lower uptake in the kidneys and spleen compared to the larger effector (21 kDa) while maintaining an in vivo stability of the astatine-carbon bond comparable to or better than intact antibodies. A proof of concept in vitro cell study demonstrates rapid reaction between the small astatinated effector and a TCO-labelled antibody, indicating the potential of this novel Poly-L-Lysine-based pretargeting system for further investigation in an in vivo tumor model.

2.
Sci Rep ; 14(1): 9698, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678056

RESUMO

Targeted alpha therapy of disseminated cancer is an emerging technique where astatine-211 is one of the most promising candidate nuclides. Astatine-211 can be produced in medium energy cyclotrons by alpha particle bombardment of natural bismuth. The produced astatine is then commonly recovered from the irradiated solid target material through dry distillation. The dry distillation process often includes elution and solvation of condensed astatine with chloroform, forming Chloroform Eluate. In this work the handling and safe use of the high activity concentration Chloroform Eluate has been investigated. Correctly performed, evaporation of Chloroform Eluate results in a dry residue with complete recovery of the astatine. The dry residue can then serve as a versatile starting material, using appropriate oxidizing or reducing conditions, for subsequent downstream chemistry. However, it has been found that when evaporating the Chloroform Eluate, astatine can be volatilized if continuing the process beyond the point of dryness. This behavior is more pronounced when the Chloroform Eluate has received a higher absorbed dose. Upon water phase contact of the Chloroform Eluate, a major part of the astatine activity becomes water soluble, leaving the organic phase. A behavior which is also dependent on dose to the solvent.

3.
J Nucl Med ; 65(4): 593-599, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423784

RESUMO

The application of prostate-specific membrane antigen (PSMA)-targeted α-therapy is a promising alternative to ß--particle-based treatments. 211At is among the potential α-emitters that are favorable for this concept. Herein, 211At-based PSMA radiopharmaceuticals were designed, developed, and evaluated. Methods: To identify a 211At-labeled lead, a surrogate strategy was applied. Because astatine does not exist as a stable nuclide, it is commonly replaced with iodine to mimic the pharmacokinetic behavior of the corresponding 211At-labeled compounds. To facilitate the process of structural design, iodine-based candidates were radiolabeled with the PET radionuclide 68Ga to study their preliminary in vitro and in vivo properties before the desired 211At-labeled lead compound was formed. The most promising candidate from this evaluation was chosen to be 211At-labeled and tested in biodistribution studies. Results: All 68Ga-labeled surrogates displayed affinities in the nanomolar range and specific internalization in PSMA-positive LNCaP cells. PET imaging of these compounds identified [68Ga]PSGa-3 as the lead compound. Subsequently, [211At]PSAt-3-Ga was synthesized in a radiochemical yield of 35% and showed tumor uptake of 19 ± 8 percentage injected dose per gram of tissue (%ID/g) at 1 h after injection and 7.6 ± 2.9 %ID/g after 24 h. Uptake in off-target tissues such as the thyroid (2.0 ± 1.1 %ID/g), spleen (3.0 ± 0.6 %ID/g), or stomach (2.0 ± 0.4 %ID/g) was low, indicating low in vivo deastatination of [211At]PSAt-3-Ga. Conclusion: The reported findings support the use of iodine-based and 68Ga-labeled variants as a convenient strategy for developing astatinated compounds and confirm [211At]PSAt-3 as a promising radiopharmaceutical for targeted α-therapy.


Assuntos
Iodo , Neoplasias da Próstata , Masculino , Humanos , Radioisótopos de Gálio , Distribuição Tecidual , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Tomografia por Emissão de Pósitrons/métodos , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Linhagem Celular Tumoral
4.
PLoS One ; 18(7): e0288756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37467227

RESUMO

OBJECTIVE: Hypokalemia is associated with increased risk of arrhythmias and it is recommended to monitor plasma potassium (p-K) regularly in at-risk patients with cardiovascular diseases. It is poorly understood if administration of potassium supplements and mineralocorticoid receptor antagonists (MRA) aimed at increasing p-K also increases intracellular potassium. METHODS: Adults aged≥18 years with an implantable cardioverter defibrillator (ICD) were randomized (1:1) to a control group or to an intervention that included guidance on potassium rich diets, potassium supplements, and MRA to increase p-K to target levels of 4.5-5.0 mmol/l for six months. Total-body-potassium (TBK) was measured by a Whole-Body-Counter along with p-K at baseline, after six weeks, and after six months. RESULTS: Fourteen patients (mean age: 59 years (standard deviation 14), 79% men) were included. Mean p-K was 3.8 mmol/l (0.2), and mean TBK was 1.50 g/kg (0.20) at baseline. After six-weeks, p-K had increased by 0.47 mmol/l (95%CI:0.14;0.81), p = 0.008 in the intervention group compared to controls, whereas no significant difference was found in TBK (44 mg/kg (-20;108), p = 0.17). After six-months, no significant difference was found in p-K as compared to baseline (0.16 mmol/l (-0.18;0.51), p = 0.36), but a significant increase in TBK of 82 mg/kg (16;148), p = 0.017 was found in the intervention group compared to controls. CONCLUSIONS: Increased potassium intake and MRAs increased TBK gradually and a significant increase was seen after six months. The differentially regulated p-K and TBK challenges current knowledge on potassium homeostasis and the time required before the full potential of p-K increasing treatment can be anticipated. TRIAL REGISTRATION: www.clinicaltrials.gov (NCT03833089).


Assuntos
Doenças Cardiovasculares , Hipopotassemia , Adulto , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Potássio/análise , Arritmias Cardíacas , Contagem Corporal Total
5.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37111352

RESUMO

To enhance targeting efficacy in the radioimmunotherapy of disseminated cancer, several pretargeting strategies have been developed. In pretargeted radioimmunotherapy, the tumor is pretargeted with a modified monoclonal antibody that has an affinity for both tumor antigens and radiolabeled carriers. In this work, we aimed to synthesize and evaluate poly-L-lysine-based effector molecules for pretargeting applications based on the tetrazine and trans-cyclooctene reaction using 211At for targeted alpha therapy and 125I as a surrogate for the imaging radionuclides 123, 124I. Poly-L-lysine in two sizes was functionalized with a prosthetic group, for the attachment of both radiohalogens, and tetrazine, to allow binding to the trans-cyclooctene-modified pretargeting agent, maintaining the structural integrity of the polymer. Radiolabeling resulted in a radiochemical yield of over 80% for astatinated poly-L-lysines and a range of 66-91% for iodinated poly-L-lysines. High specific astatine activity was achieved without affecting the stability of the radiopharmaceutical or the binding between tetrazine and transcyclooctene. Two sizes of poly-L-lysine were evaluated, which displayed similar blood clearance profiles in a pilot in vivo study. This work is a first step toward creating a pretargeting system optimized for targeted alpha therapy with 211At.

6.
Nanotheranostics ; 6(4): 388-399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912139

RESUMO

Astatine-211 (211At) is one of the most promising α-emitters for targeted alpha therapy, especially of cancer metastases. However, the lack of a stable isotope, frequent in vivo deastatination, and limited radiochemical knowledge makes it challenging to apply. Here, we report a new strategy for radiolabeling the lipophilic core of polymeric micelles (PMs) with covalently bound 211At. The PMs were radiolabeled via either an indirect synthon-based method or directly on the amphipathic block copolymer. The radiochemistry was optimized with iodine-125 (125I) and then adapted for 211At, enabling the use of both elements as a potential theranostic pair. PMs that were core-radiolabeled with both 125I or 211At were prepared and characterized, based on a PEG(5k)-PLGA(10k) co-polymer. The stability of the radiolabeled PMs was evaluated in mouse serum for 21 h, showing radiochemical stability above 85%. After in vivo evaluation of the 211At- labeled PMs, 4-5 % ID/g of the 211At could still be detected in the blood, showing a promising in vivo stability of the PMs. Further, 211At-labeled PMs accumulated in the spleen (20-30 %ID/g) and the liver (2.5- 5.5 %ID/g), along with some detection of 211At in the thyroid (3.5-9 %ID/g). This led to the hypothesis that deastatination takes place in the liver, whereas good stability of the 211At core-radiolabel was observed in the blood.


Assuntos
Micelas , Medicina de Precisão , Animais , Radioisótopos do Iodo/uso terapêutico , Camundongos , Polímeros/química , Compostos Radiofarmacêuticos
7.
Transl Oncol ; 14(1): 100873, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32987283

RESUMO

INTRODUCTION: Antibodies labeled with alpha-emitter astatine-211 have previously shown effective in intraperitoneal (i.p.) treatments of ovarian cancer. In the present work we explore the use of investigational farletuzumab, aimed at the folate receptor alpha. The aim was to evaluate the biodistribution and therapeutic effect of 211At-farletuzumab in in-vitro and in-vivo experiments and, using models for radiation dosimetry, to translate the findings to expected clinical result. The activity concentration used for therapy in mice (170 kBq/mL) was chosen to be in agreement with an activity concentration that is anticipated to be clinically relevant in patients (200 MBq/L). METHODS: For biodistribution, using intravenous injections and mice carrying subcutaneous (s.c.) tumors, the animals were administered either 211At-farletuzumab (n = 16); or with a combination of 125I-farletuzumab and 211At-MX35 (n = 12). At 1, 3, 10 and 22 h, mice were euthanized and s.c.-tumors and organs weighted and measured for radioactivity. To evaluate therapeutic efficacy, mice were inoculated i.p. with 2 × 106 NIH:OVCAR-3 cells. Twelve days later, the treatments were initiated by i.p.-administration. Specific treatment was given by 211At-labeled farletuzumab (group A; n = 22, 170 kBq/mL) which is specific for OVCAR-3 cells. Control treatments were given by either 211At-labeled rituximab which is unspecific for OVCAR-3 (group B; n = 22, 170 kBq/mL), non-radiolabeled farletuzumab (group C; n = 11) or PBS only (group D; n = 8). RESULTS: The biodistribution of 211At-farletuzumab was similar to that with 125I as radiolabel, and also to that of 211At-labeled MX35 antibody. The tumor-free fraction (TFF) of the three control groups were all low (PBS 12%, unlabeled specific farletuzumab 9% and unspecific 211At-rituximab 14%). TFF following treatment with 211At-farletuzumab was 91%. CONCLUSION: The current investigation of intraperitoneal therapy with 211At-farletuzumab, delivered at clinically relevant 211At-mAb radioactivity concentrations and specific activities, showed a 6 to 10-fold increase (treated versus controls) in antitumor efficacy. This observation warrants further clinical testing.

8.
EJNMMI Res ; 10(1): 10, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32048062

RESUMO

PURPOSE: Targeted alpha therapy (TAT) is a promising treatment for micrometastatic and minimal residual cancer. We evaluated systemic α-radioimmunotherapy (α-RIT) of metastatic castration-resistant prostate cancer (mCRPC) using the α-particle emitter 211At-labeled to the anti-PSCA A11 minibody. A11 is specific for prostate stem cell antigen (PSCA), a cell surface glycoprotein which is overexpressed in more than 90% of both localized prostate cancer and bone metastases. METHODS: PC3-PSCA cells were implanted subcutaneously (s.c.) and intratibially (i.t) in nude mice. Efficacy of α-RIT (two fractions-14-day interval) was studied on s.c. macrotumors (0, 1.5 and 1.9 MBq) and on i.t. microtumors (~100-200 µm; 0, 0.8 or 1.5 MBq) by tumor-volume measurements. The injected activities for therapies were estimated from separate biodistribution and myelotoxicity studies. RESULTS: Tumor targeting of 211At-A11 was efficient and the effect on s.c. macrotumors was strong and dose-dependent. At 6 weeks, the mean tumor volumes for the treated groups, compared with controls, were reduced by approximately 85%. The separate myelotoxicity study following one single fraction showed reduced white blood cells (WBC) for all treated groups on day 6 after treatment. For the 0.8 and 1.5 MBq, the WBC reductions were transient and followed by recovery at day 13. For 2.4 MBq, a clear toxicity was observed and the mice were sacrificed on day 7. In the long-term follow-up of the 0.8 and 1.5 MBq-groups, blood counts on day 252 were normal and no signs of radiotoxicity observed. Efficacy on i.t. microtumors was evaluated in two experiments. In experiment 1, the tumor-free fraction (TFF) was 95% for both treated groups and significantly different (p < 0.05) from the controls at a TFF of 66%). In experiment 2, the difference in TFF was smaller, 32% for the treated group versus 20% for the controls. However, the difference in microtumor volume in experiment 2 was highly significant, 0.010 ± 0.003 mm3 versus 3.79 ± 1.24 mm3 (treated versus controls, respectively), i.e., a 99.7% reduction (p < 0.001). The different outcome in experiment 1 and 2 is most likely due to differences in microtumor sizes at therapy, or higher tumor-take in experiment 2 (where more cells were implanted). CONCLUSION: Evaluating fractionated α-RIT with 211At-labeled anti-PSCA A11 minibody, we found clear growth inhibition on both macrotumors and intratibial microtumors. For mice treated with multiple fractions, we also observed radiotoxicity manifested by progressive loss in body weight at 30 to 90 days after treatment. Our findings are conceptually promising for a systemic TAT of mCRPC and warrant further investigations of 211At-labeled PSCA-directed vectors. Such studies should include methods to improve the therapeutic window, e.g., by implementing a pretargeted regimen of α-RIT or by altering the size of the targeting vector.

9.
Cancer Biother Radiopharm ; 35(6): 425-436, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32077749

RESUMO

Despite the consensus around the clinical potential of the α-emitting radionuclide astatine-211 (211At), there are only a limited number of research facilities that work with this nuclide. There are three main reasons for this: (1) Scarce availability of the nuclide. Despite a relatively large number of globally existing cyclotrons capable of producing 211At, few cyclotron facilities produce the nuclide on a regular basis. (2) Lack of a chemical infrastructure, that is, isolation of 211At from irradiated targets and the subsequent synthesis of an astatinated product. At present, the research groups that work with 211At depend on custom systems for recovering 211At from the irradiated targets. Setting up and implementing such custom units require long lead times to provide a proper working system. (3) The chemistry of 211At. Compared with radiometals there are no well-established and generally accepted synthesis methods for forming sufficiently stable bonds between 211At and the tumor-specific vector to allow for systemic applications. Herein we present an overview of the infrastructure of producing 211At radiopharmaceuticals, from target to radiolabeled product including chemical strategies to overcome hurdles for advancement into clinical trials with 211At.


Assuntos
Astato/química , Ciclotrons , Neoplasias/radioterapia , Radioterapia (Especialidade)/instrumentação , Compostos Radiofarmacêuticos/química , Partículas alfa/uso terapêutico , Astato/isolamento & purificação , Astato/uso terapêutico , Ensaios Clínicos como Assunto , Humanos , Radioterapia (Especialidade)/métodos , Compostos Radiofarmacêuticos/isolamento & purificação , Compostos Radiofarmacêuticos/uso terapêutico
10.
Chempluschem ; 84(7): 775-778, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31681526

RESUMO

In the past decade, several developments have expanded the chemical toolbox for astatination and the preparation of 211At-labeled radiopharmaceuticals. However, there is still a need for advanced methods for the synthesis of astatinated (bio)molecules to address challenges such as limited in vivo stability. Herein, we report the development of multifunctional 211At-labeled reagents that can be prepared by applying a modular and versatile click approach for rapid assembly. The introduction of tetrazines as bioorthogonal tags enables rapid radiolabeling and radio-crosslinking, which is demonstrated by steric shielding of 211At to significantly increase label stability in human blood plasma.


Assuntos
Química Click/métodos , Compostos Radiofarmacêuticos/química , Astato/química , Meia-Vida , Compostos Heterocíclicos com 1 Anel/química , Humanos , Marcação por Isótopo , Compostos Radiofarmacêuticos/sangue , Compostos Radiofarmacêuticos/síntese química
11.
Sci Rep ; 9(1): 15900, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685874

RESUMO

Targeted alpha therapy of disseminated cancer is an emerging technique where astatine-211 is one of the most promising candidate nuclides. Although astatine has been known for over 70 years, its chemistry is still largely unexplored, mainly due to the lack of stable or long-lived isotopes. However, substantial amounts of astatine-211 can be produced in cyclotrons by the bombardment of natural bismuth. The astatine can be recovered from the resulting irradiated target material through either wet extraction or dry-distillation. Chloroform has become an important intermediate solvent for the recovery of astatine after production, especially following dry distillation. In this work, the radiochemistry of astatine in chloroform was investigated using evaporation, solvent extraction, chromatographic methods and molecular modeling. The extraction of astatine in chloroform led to the formation of multiple astatine species, allowing for evaporation of the solvent to dryness without any loss of activity. Radiolysis products of chloroform were shown to play an important role in the speciation of astatine forming both reactive and kinetically stable compounds. It was hypothesized that reactions with chlorine, as well as trichloromethyl hydroperoxide, forming polar astatine compounds are important reactions under the current experimental conditions.

12.
Mol Pharm ; 16(8): 3524-3533, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31268724

RESUMO

The use of nanobodies (Nbs) as vehicles in targeted alpha therapy (TAT) has gained great interest because of their excellent properties. They combine high in vivo affinity and specificity of binding with fast kinetics. This research investigates a novel targeted therapy that combines the α-particle emitter astatine-211 (211At) and the anti-HER2 Nb 2Rs15d to selectively target HER2+ cancer cells. Two distinctive radiochemical methodologies are investigated using three different coupling reagents. The first method uses the coupling reagents, N-succinimidyl 4-(1,2-bis-tert-butoxycarbonyl)guanidinomethyl-3-(trimethylstannyl)benzoate (Boc2-SGMTB) and N-succinimidyl-3-(trimethylstannyl)benzoate (m-MeATE), which are both directed to amino groups on the Nb, resulting in random conjugation. The second method aims at obtaining a homogeneous tracer population, via a site-specific conjugation of the N-[2-(maleimido)ethyl]-3-(trimethylstannyl)benzamide (MSB) reagent onto the carboxyl-terminal cysteine of the Nb. The resulting radioconjugates are evaluated in vitro and in vivo. 2Rs15d is labeled with 211At using Boc2-SGMTB, m-MeATE, and MSB. After astatination and purification, the binding specificity of the radioconjugates is validated on HER2+ cells, followed by an in vivo biodistribution assessment in SKOV-3 xenografted mice. α-camera imaging is performed to determine uptake and activity distribution in kidneys/tumors. 2Rs15d astatination resulted in a high radiochemical purity >95% for all radioconjugates. The biodistribution studies of all radioconjugates revealed comparable tumor uptake (higher than 8% ID/g at 1 h). [211At]SAGMB-2Rs15d showed minor uptake in normal tissues. Only in the kidneys, a higher uptake was measured after 1 h, but decreased rapidly after 3 h. Astatinated Nbs consisting of m-MeATE or MSB reagents revealed elevated uptake in lungs and stomach, indicating the presence of released 211At. α-Camera imaging of tumors revealed a homogeneous activity distribution. The radioactivity in the kidneys was initially concentrated in the renal cortex, while after 3 h most radioactivity was measured in the medulla, confirming the fast washout into urine. Changing the reagents for Nb astatination resulted in different in vivo biodistribution profiles, while keeping the targeting moiety identical. Boc2-SGMTB is the preferred reagent for Nb astatination because of its high tumor uptake, its low background signals, and its fast renal excretion. We envision [211At]SAGMB-2Rs15d to be a promising therapeutic agent for TAT and aim toward efficacy evaluation.


Assuntos
Astato/administração & dosagem , Imunoconjugados/administração & dosagem , Neoplasias Ovarianas/radioterapia , Receptor ErbB-2/antagonistas & inibidores , Anticorpos de Domínio Único/administração & dosagem , Partículas alfa/uso terapêutico , Animais , Astato/química , Astato/farmacocinética , Benzoatos/química , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Feminino , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/farmacocinética , Camundongos , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/patologia , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Distribuição Tecidual , Compostos de Trimetilestanho/química , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Nucl Med ; 60(8): 1073-1079, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30683761

RESUMO

Eliminating microscopic residual disease with α-particle radiation is theoretically appealing. After extensive preclinical work with α-particle-emitting 211At, we performed a phase I trial with intraperitoneal α-particle therapy in epithelial ovarian cancer using 211At conjugated to MX35, the antigen-binding fragments-F(ab')2-of a mouse monoclonal antibody. We now present clinical outcome data and toxicity in a long-term follow-up with individual absorbed dose estimations. Methods: Twelve patients with relapsed epithelial ovarian cancer, achieving a second complete or nearly complete response with chemotherapy, received intraperitoneal treatment with escalating (20-215 MBq/L) activity concentrations of 211At-MX35 F(ab')2.Results: The activity concentration was escalated to 215 MBq/L without any dose-limiting toxicities. Most toxicities were low-grade and likely related to the treatment procedure, not clearly linked to the α-particle irradiation, with no observed hematologic toxicity. One grade 3 fatigue and 1 grade 4 intestinal perforation during catheter implantation were observed. Four patients had a survival of more than 6 y, one of whom did not relapse. At progression, chemotherapy was given without signs of reduced tolerability. Overall median survival was 35 mo, with a 1-, 2-, 5-, and 10-y survival of 100%, 83%, 50%, and 25%, respectively. Calculations of the absorbed doses showed that a lower specific activity is associated with a lower single-cell dose, whereas a high specific activity may result in a lower central dose in microtumors. Individual differences in absorbed dose to possible microtumors were due to variations in administered activity and the specific activity. Conclusion: No apparent signs of radiation-induced toxicity or decreased tolerance to relapse therapy were observed. The dosimetric calculations show that further optimization is advisable to increase the efficacy and reduce possible long-term toxicity.


Assuntos
Astato , Carcinoma Epitelial do Ovário/imunologia , Carcinoma Epitelial do Ovário/radioterapia , Recidiva Local de Neoplasia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/radioterapia , Radioimunoterapia/métodos , Adulto , Idoso , Partículas alfa , Animais , Anticorpos Monoclonais/química , Carcinoma Epitelial do Ovário/mortalidade , Catéteres , Progressão da Doença , Feminino , Seguimentos , Humanos , Fragmentos Fab das Imunoglobulinas , Infusões Parenterais , Dose Máxima Tolerável , Camundongos , Pessoa de Meia-Idade , Neoplasia Residual , Neoplasias Ovarianas/mortalidade , Doses de Radiação , Radiometria , Recidiva , Reprodutibilidade dos Testes , Resultado do Tratamento
14.
Chempluschem ; 84(7): 774, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31943997

RESUMO

Invited for this month's cover is the group of Dr. Hannes Mikula at Vienna University of Technology (TU Wien), Austria. The cover picture shows immobilized astatine-labeled reagents that have been sterically shielded with polyethylene chains by rapid bioorthogonal ligation leading to increased stability of the radiolabel in biological media. These multifunctional and bioorthogonal 211 At reagents can be efficiently prepared by rapid click assembly and simultaneous astatination. Read the full text of the article at 10.1002/cplu.201900114.


Assuntos
Astato/química , Química Click/métodos , Reagentes de Ligações Cruzadas/química , Áustria , Humanos , Coloração e Rotulagem
15.
J Nucl Med ; 58(4): 598-604, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27688477

RESUMO

The goal of this study was to investigate whether targeted α-therapy can be used to successfully treat macrotumors, in addition to its established role for treating micrometastatic and minimal disease. We used an intravenous fractionated regimen of α-radioimmunotherapy in a subcutaneous tumor model in mice. We aimed to evaluate the absorbed dose levels required for tumor eradication and growth monitoring, as well as to evaluate long-term survival after treatment. Methods: Mice bearing subcutaneous tumors (50 mm3, NIH:OVCAR-3) were injected repeatedly (1-3 intravenous injections 7-10 d apart, allowing bone marrow recovery) with 211At-MX35-F(ab')2 at different activities (close to acute myelotoxicity). Mean absorbed doses to tumors and organs were estimated from biodistribution data and summed for the fractions. Tumor growth was monitored for 100 d and survival for 1 y after treatment. Toxicity analysis included body weight, white blood cell count, and hematocrit. Results: Effects on tumor growth after fractionated α-radioimmunotherapy with 211At-MX35-F(ab')2 was strong and dose-dependent. Complete remission (tumor-free fraction, 100%) was found for tumor doses of 12.4 and 16.4 Gy. The administered activities were high, and long-term toxicity effects (≤60 wk) were clear. Above 1 MBq, the median survival decreased linearly with injected activity, from 44 to 11 wk. Toxicity was also seen by reduced body weight. White blood cell count analysis after α-radioimmunotherapy indicated bone marrow recovery for the low-activity groups, whereas for high-activity groups the reduction was close to acute myelotoxicity. A decrease in hematocrit was seen at a late interval (34-59 wk after therapy). The main external indication of poor health was dehydration. Conclusion: Having observed complete eradication of solid tumor xenografts, we conclude that targeted α-therapy regimens may stretch beyond the realm of micrometastatic disease and be eradicative also for macrotumors. Our observations indicate that at least 10 Gy are required. This agrees well with the calculated tumor control probability. Considering a relative biological effectiveness of 5, this dose level seems reasonable. However, complete remission was achieved first at activity levels close to lethal and was accompanied by biologic effects that reduced long-term survival.


Assuntos
Partículas alfa/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Astato/uso terapêutico , Transformação Celular Neoplásica , Neoplasias Ovarianas/radioterapia , Doses de Radiação , Radioimunoterapia/métodos , Animais , Anticorpos Monoclonais/farmacocinética , Peso Corporal/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Radiometria , Análise de Sobrevida , Fatores de Tempo , Distribuição Tecidual
16.
Bioconjug Chem ; 27(3): 688-97, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26791409

RESUMO

Effective treatment of metastasis is a great challenge in the treatment of different types of cancers. Targeted alpha therapy utilizes the short tissue range (50-100 µm) of α particles, making the method suitable for treatment of disseminated occult cancers in the form of microtumors or even single cancer cells. A promising radioactive nuclide for this type of therapy is astatine-211. Astatine-211 attached to tumor-specific antibodies as carrier molecules is a system currently under investigation for use in targeted alpha therapy. In the common radiolabeling procedure, astatine is coupled to the antibody arbitrarily on lysine residues. By instead coupling astatine to disulfide bridges in the antibody structure, the immunoreactivity of the antibody conjugates could possibly be increased. Here, the disulfide-based conjugation was performed using a new coupling reagent, maleimidoethyl 3-(trimethylstannyl)benzamide (MSB), and evaluated for chemical stability in vitro. The immunoconjugates were subsequently astatinated, resulting in both high radiochemical yield and high specific activity. The MSB-conjugate was shown to be stable with a long shelf life prior to the astatination. In a comparison of the in vivo distribution of the new immunoconjugate with other tin-based immunoconjugates in tumor-bearing mice, the MSB conjugation method was found to be a viable option for successful astatine labeling of different monoclonal antibodies.


Assuntos
Astato/química , Benzamidas/química , Imunoconjugados/química , Animais , Camundongos , Camundongos Endogâmicos BALB C
17.
Int J Radiat Oncol Biol Phys ; 93(3): 569-76, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26460999

RESUMO

PURPOSE: Ovarian cancer is often diagnosed at an advanced stage with dissemination in the peritoneal cavity. Most patients achieve clinical remission after surgery and chemotherapy, but approximately 70% eventually experience recurrence, usually in the peritoneal cavity. To prevent recurrence, intraperitoneal (i.p.) targeted α therapy has been proposed as an adjuvant treatment for minimal residual disease after successful primary treatment. In the present study, we calculated absorbed and relative biological effect (RBE)-weighted (equivalent) doses in relevant normal tissues and estimated the effective dose associated with i.p. administration of (211)At-MX35 F(ab')2. METHODS AND MATERIALS: Patients in clinical remission after salvage chemotherapy for peritoneal recurrence of ovarian cancer underwent i.p. infusion of (211)At-MX35 F(ab')2. Potassium perchlorate was given to block unwanted accumulation of (211)At in thyroid and other NIS-containing tissues. Mean absorbed doses to normal tissues were calculated from clinical data, including blood and i.p. fluid samples, urine, γ-camera images, and single-photon emission computed tomography/computed tomography images. Extrapolation of preclinical biodistribution data combined with clinical blood activity data allowed us to estimate absorbed doses in additional tissues. The equivalent dose was calculated using an RBE of 5 and the effective dose using the recommended weight factor of 20. All doses were normalized to the initial activity concentration of the infused therapy solution. RESULTS: The urinary bladder, thyroid, and kidneys (1.9, 1.8, and 1.7 mGy per MBq/L) received the 3 highest estimated absorbed doses. When the tissue-weighting factors were applied, the largest contributors to the effective dose were the lungs, stomach, and urinary bladder. Using 100 MBq/L, organ equivalent doses were less than 10% of the estimated tolerance dose. CONCLUSION: Intraperitoneal (211)At-MX35 F(ab')2 treatment is potentially a well-tolerated therapy for locally confined microscopic ovarian cancer. Absorbed doses to normal organs are low, but because the effective dose potentially corresponds to a risk of treatment-induced carcinogenesis, optimization may still be valuable.


Assuntos
Anticorpos Monoclonais/farmacocinética , Astato/farmacocinética , Imunoconjugados/farmacocinética , Fragmentos Fab das Imunoglobulinas/metabolismo , Neoplasias Ovarianas/radioterapia , Neoplasias Peritoneais/radioterapia , Radioimunoterapia/métodos , Partículas alfa/uso terapêutico , Elétrons/uso terapêutico , Feminino , Mucosa Gástrica/metabolismo , Humanos , Rim/diagnóstico por imagem , Rim/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Recidiva Local de Neoplasia , Neoplasia Residual , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/secundário , Terapia com Prótons , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Medição de Risco , Estômago/diagnóstico por imagem , Glândula Tireoide/diagnóstico por imagem , Glândula Tireoide/metabolismo , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/metabolismo
18.
Sci Rep ; 5: 12025, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26169786

RESUMO

To facilitate multicentre clinical studies on targeted alpha therapy, it is necessary to develop an automated, on-site procedure for conjugating rare, short-lived, alpha-emitting radionuclides to biomolecules. Astatine-211 is one of the few alpha-emitting nuclides with appropriate chemical and physical properties for use in targeted therapies for cancer. Due to the very short range of the emitted α-particles, this therapy is particularly suited to treating occult, disseminated cancers. Astatine is not intrinsically tumour-specific; therefore, it requires an appropriate tumour-specific targeting vector, which can guide the radiation to the cancer cells. Consequently, an appropriate method is required for coupling the nuclide to the vector. To increase the availability of astatine-211 radiopharmaceuticals for targeted alpha therapy, their production should be automated. Here, we present a method that combines dry distillation of astatine-211 and a synthesis module for producing radiopharmaceuticals into a process platform. This platform will standardize production of astatinated radiopharmaceuticals, and hence, it will facilitate large clinical studies focused on this promising, but chemically challenging, alpha-emitting radionuclide. In this work, we describe the process platform, and we demonstrate the production of both astaine-211, for preclinical use, and astatine-211 labelled antibodies.


Assuntos
Astato/química , Ensaios Clínicos como Assunto , Estudos Multicêntricos como Assunto , Compostos Radiofarmacêuticos/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Automação Laboratorial , Destilação/métodos , Humanos , Marcação por Isótopo , Neoplasias/tratamento farmacológico , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/uso terapêutico
19.
PLoS One ; 10(5): e0126298, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970341

RESUMO

The aim of this preclinical study was to evaluate the characteristics of the monoclonal antibody Rebmab200, which is a humanized version of the ovarian-specific murine antibody MX35. This investigation contributes to the foundation for future clinical α-radioimmunotherapy of minimal residual ovarian cancer with 211At-Rebmab200. Here, the biodistribution of 211At-Rebmab200 was evaluated, as was the utility of 99mTc-Rebmab200 for bioimaging. Rebmab200 was directly compared with its murine counterpart MX35 in terms of its in-vitro capacity for binding the immobilized NaPi2B epitope and live cells; we also assessed its biodistribution in nude mice carrying subcutaneous OVCAR-3 tumors. Tumor antigen and cell binding were similar between Rebmab200 and murine MX35, as was biodistribution, including normal tissue uptake and in-vivo tumor binding. We also demonstrated that 99mTc-Rebmab200 can be used for single-photon emission computed tomography of subcutaneous ovarian carcinomas in tumor-bearing mice. Taken together, our data support the further development of Rebmab200 for radioimmunotherapy and diagnostics.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais/farmacocinética , Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacocinética , Carcinoma/diagnóstico por imagem , Neoplasias Ovarianas/diagnóstico por imagem , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Afinidade de Anticorpos , Especificidade de Anticorpos , Antígenos de Neoplasias/genética , Antineoplásicos/farmacologia , Astato/química , Carcinoma/genética , Carcinoma/imunologia , Carcinoma/terapia , Linhagem Celular Tumoral , Feminino , Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Radioimunoterapia , Compostos Radiofarmacêuticos/química , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo , Tecnécio/química , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancer Biother Radiopharm ; 30(1): 41-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25588020

RESUMO

Astatine-211 is possibly the most promising radionuclide for targeted α-particle therapy when it comes to the treatment of occult disseminated cancer. Preclinical research has proven effective, and patient studies have been initiated based on these results. However, a lack of production capacity and the complex radiochemistry of (211)At are major obstacles for research and prospective clinical applications. In the present study, astatination of immunoconjugates, already prepared well in advance before radiolabeling, was performed to investigate the possibility of formulating a kit-like reagent for the production of (211)At radiopharmaceuticals. The shelf-life of ɛ-lysyl-3-(trimethylstannyl)benzamide immunoconjugates was evaluated, that is, the effect of different storage times on the quality of the immunoconjugates. The quality being referred to is the capacity to maintain a good radiochemical yield and good cell-binding property after labeling with (211)At. The stability of the conjugates was found to be pH dependent with high stability at pH≥7 and less stability at pH≤5.5. The immunoconjugates (based on trastuzumab) could be kept for more than 3 months in a phosphate buffered saline solution (pH 7.4) at 4°C before labeling, without compromising the quality of the labeled product. The conjugates are also unaffected by storage at -20°C. Conjugates with a good shelf-life compatible with distant shipping as well as improved radiochemistry are important steps to facilitate further clinical progress with (211)At.


Assuntos
Astato/química , Benzamidas/química , Imunoconjugados/química , Compostos de Trimetilestanho/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados/química , Antineoplásicos/química , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Humanos , Marcação por Isótopo , Compostos Radiofarmacêuticos/química , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...