Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 23(12): 4428-45, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22198148

RESUMO

Since the first ultrastructural investigations of sieve tubes in the early 1960s, their structure has been a matter of debate. Because sieve tube structure defines frictional interactions in the tube system, the presence of P protein obstructions shown in many transmission electron micrographs led to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch's classical hypothesis. Here, we show that the phloem contains a distinctive network of protein filaments. Stable transgenic lines expressing Arabidopsis thaliana Sieve-Element-Occlusion-Related1 (SEOR1)-yellow fluorescent protein fusions show that At SEOR1 meshworks at the margins and clots in the lumen are a general feature of living sieve tubes. Live imaging of phloem flow and flow velocity measurements in individual tubes indicate that At SEOR1 agglomerations do not markedly affect or alter flow. A transmission electron microscopy preparation protocol has been generated showing sieve tube ultrastructure of unprecedented quality. A reconstruction of sieve tube ultrastructure served as basis for tube resistance calculations. The impact of agglomerations on phloem flow is discussed.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Floema/ultraestrutura , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Clonagem Molecular , Corantes Fluorescentes/metabolismo , Substituição ao Congelamento , Genes de Plantas , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Transmissão , Mutagênese Insercional , Floema/crescimento & desenvolvimento , Floema/metabolismo , Células Vegetais/metabolismo , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Populus/crescimento & desenvolvimento , Populus/metabolismo , Pressão , Transporte Proteico , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Transformação Genética
2.
Phys Rev Lett ; 96(17): 174502, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16712302

RESUMO

We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating internal waves in a similar setup was observed for much lower rotation rates, where the free surface remains essentially flat [J. M. Lopez, J. Fluid Mech. 502, 99 (2004). We speculate that the instability is caused by the strong azimuthal shear due to the stationary walls and that it is triggered by minute wobbling of the rotating plate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA