Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Trends Hear ; 26: 23312165221129165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36379607

RESUMO

Sensitivity to interaural time differences (ITDs) in acoustic hearing involves comparison of interaurally frequency-matched inputs. Bilateral cochlear-implant arrays are, however, only approximately aligned in angular insertion depth and scalar location across the cochleae. Interaural place-of-stimulation mismatch therefore has the potential to impact binaural perception. ITD left-right discrimination thresholds were examined in 23 postlingually-deafened adult bilateral cochlear-implant listeners, using low-rate constant-amplitude pulse trains presented via direct stimulation to single electrodes in each ear. Angular insertion depth and scalar location measured from computed-tomography (CT) scans were used to quantify interaural mismatch, and their association with binaural performance was assessed. Number-matched electrodes displayed a median interaural insertion-depth mismatch of 18° and generally yielded best or near-best ITD discrimination thresholds. Two listeners whose discrimination thresholds did not show this pattern were confirmed via CT to have atypical array placement. Listeners with more number-matched electrode pairs located in the scala tympani displayed better thresholds than listeners with fewer such pairs. ITD tuning curves as a function of interaural electrode separation were broad; bandwidths at twice the threshold minimum averaged 10.5 electrodes (equivalent to 5.9 mm for a Cochlear-brand pre-curved array). Larger angular insertion-depth differences were associated with wider bandwidths. Wide ITD tuning curve bandwidths appear to be a product of both monopolar stimulation and angular insertion-depth mismatch. Cases of good ITD sensitivity with very wide bandwidths suggest that precise matching of insertion depth is not critical for discrimination thresholds. Further prioritizing scala tympani location at implantation should, however, benefit ITD sensitivity.


Assuntos
Implante Coclear , Implantes Cocleares , Localização de Som , Adulto , Humanos , Estimulação Acústica/métodos , Audição , Testes Auditivos , Localização de Som/fisiologia
2.
Otol Neurotol ; 43(6): 666-675, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35761459

RESUMO

HYPOTHESIS: Bilateral cochlear-implant (BI-CI) users will have a range of interaural insertion-depth mismatch because of different array placement or characteristics. Mismatch will be larger for electrodes located near the apex or outside scala tympani, or for arrays that are a mix of precurved and straight types. BACKGROUND: Brainstem superior olivary-complex neurons are exquisitely sensitive to interaural-difference cues for sound localization. Because these neurons rely on interaurally place-of-stimulation-matched inputs, interaural insertion-depth or scalar-location differences for BI-CI users could cause interaural place-of-stimulation mismatch that impairs binaural abilities. METHODS: Insertion depths and scalar locations were calculated from temporal-bone computed-tomography scans for 107 BI-CI users (27 Advanced Bionics, 62 Cochlear, 18 MED-EL). RESULTS: Median interaural insertion-depth mismatch was 23.4 degrees or 1.3 mm. Mismatch in the estimated clinically relevant range expected to impair binaural processing (>75 degrees or 3 mm) occurred for 13 to 19% of electrode pairs overall, and for at least three electrode pairs for 23 to 37% of subjects. There was a significant three-way interaction between insertion depth, scalar location, and array type. Interaural insertion-depth mismatch was largest for apical electrodes, for electrode pairs in two different scala, and for arrays that were both-precurved. CONCLUSION: Average BI-CI interaural insertion-depth mismatch was small; however, large interaural insertion-depth mismatch-with the potential to degrade spatial hearing-occurred frequently enough to warrant attention. For new BICI users, improved surgical techniques to avoid interaural insertion-depth and scalar mismatch are recommended. For existing BI-CI users with interaural insertion-depth mismatch, interaural alignment of clinical frequency tables might reduce negative spatial-hearing consequences.


Assuntos
Implante Coclear , Implantes Cocleares , Localização de Som , Implante Coclear/métodos , Humanos , Rampa do Tímpano , Localização de Som/fisiologia , Tomografia
3.
MAGMA ; 35(5): 843-859, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35038062

RESUMO

OBJECTIVE: Magnetic resonance imaging (MRI)-based techniques for non-invasive assessing liver iron concentration (LIC) in patients with iron overload have a limited upper measuring range around 35 mg/g dry weight, caused by signal loss from accelerated T1-, T2-, T2* shortening with increasing LIC. Expansion of this range is necessary to allow evaluation of patients with very high LIC. AIM: To assess measuring range of a gradient-echo R2* method and a T1-weighted spin-echo (SE), signal intensity ratio (SIR)-based method (TE = 25 ms, TR = 560 ms), and to extend the upper measuring range of the SIR method by optimizing echo time (TE) and repetition time (TR) in iron-loaded minipigs. METHODS: Thirteen mini pigs were followed up during dextran-iron loading with repeated percutaneous liver biopsies for chemical LIC measurement and MRIs for parallel non-invasive estimation of LIC (81 examinations) using different TEs and TRs. RESULTS: SIR and R2* method had similar upper measuring range around 34 mg/g and similar method agreement. Using TE = 12 ms and TR = 1200 ms extended the upper measuring range to 115 mg/g and yielded good method of agreement. DISCUSSION: The wider measuring range is likely caused by lesser sensitivity of the SE sequence to iron, due to shorter TE, leading to later signal loss at high LIC, allowing evaluation of most severe hepatic iron overload. Validation in iron-loaded patients is necessary.


Assuntos
Dextranos , Sobrecarga de Ferro , Animais , Biópsia , Calibragem , Ferro , Sobrecarga de Ferro/diagnóstico por imagem , Fígado/diagnóstico por imagem , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Suínos , Porco Miniatura
4.
J Neurosci ; 41(49): 10161-10178, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34725189

RESUMO

Bilateral cochlear implants (BI-CIs) or a CI for single-sided deafness (SSD-CI; one normally functioning acoustic ear) can partially restore spatial-hearing abilities, including sound localization and speech understanding in noise. For these populations, however, interaural place-of-stimulation mismatch can occur and thus diminish binaural sensitivity that relies on interaurally frequency-matched neurons. This study examined whether plasticity-reorganization of central neural pathways over time-can compensate for peripheral interaural place mismatch. We hypothesized differential plasticity across two systems: none for binaural processing but adaptation for pitch perception toward frequencies delivered by the specific electrodes. Interaural place mismatch was evaluated in 19 BI-CI and 23 SSD-CI human subjects (both sexes) using binaural processing (interaural-time-difference discrimination with simultaneous bilateral stimulation), pitch perception (pitch ranking for single electrodes or acoustic tones with sequential bilateral stimulation), and physical electrode-location estimates from computed-tomography (CT) scans. On average, CT scans revealed relatively little BI-CI interaural place mismatch (26° insertion-angle mismatch) but a relatively large SSD-CI mismatch, particularly at low frequencies (166° for an electrode tuned to 300 Hz, decreasing to 14° at 7000 Hz). For BI-CI subjects, the three metrics were in agreement because there was little mismatch. For SSD-CI subjects, binaural and CT measurements were in agreement, suggesting little binaural-system plasticity induced by mismatch. The pitch measurements disagreed with binaural and CT measurements, suggesting place-pitch plasticity or a procedural bias. These results suggest that reducing interaural place mismatch and potentially improving binaural processing by reprogramming the CI frequency allocation would be better done using CT-scan than pitch information.SIGNIFICANCE STATEMENT Electrode-array placement for cochlear implants (bionic prostheses that partially restore hearing) does not explicitly align neural representations of frequency information. The resulting interaural place-of-stimulation mismatch can diminish spatial-hearing abilities. In this study, adults with two cochlear implants showed reasonable interaural alignment, whereas those with one cochlear implant but normal hearing in the other ear often showed mismatch. In cases of mismatch, binaural sensitivity was best when the same cochlear locations were stimulated in both ears, suggesting that binaural brainstem pathways do not experience plasticity to compensate for mismatch. In contrast, interaurally pitch-matched electrodes deviated from cochlear-location estimates and did not optimize binaural sensitivity. Clinical correction of interaural place mismatch using binaural or computed-tomography (but not pitch) information may improve spatial-hearing benefits.


Assuntos
Adaptação Fisiológica/fisiologia , Implantes Cocleares , Plasticidade Neuronal/fisiologia , Percepção da Altura Sonora/fisiologia , Adulto , Idoso , Implante Coclear , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X
5.
Trends Hear ; 25: 2331216521997324, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34057382

RESUMO

Interaural place-of-stimulation mismatch for bilateral cochlear-implant (BI-CI) listeners is often evaluated using pitch-comparison tasks that can be susceptible to procedural biases. Bias effects were compared for three sequential interaural pitch-comparison tasks in six BI-CI listeners using single-electrode direct stimulation. The reference (right ear) was a single basal, middle, or apical electrode. The comparison electrode (left ear) was chosen from one of three ranges: basal half, full array, or apical half. In Experiment 1 (discrimination), interaural pairs were chosen randomly (method of constant stimuli). In Experiment 2 (ranking), an efficient adaptive procedure rank ordered 3 reference and 6 or 11 comparison electrodes. In Experiment 3 (matching), listeners adjusted the comparison electrode to pitch match the reference. Each experiment was evaluated for testing-range bias (point of subjective equality [PSE] vs. comparison-range midpoint) and reference-electrode slope bias (PSE vs. reference electrode). Discrimination showed large biases for both metrics; matching showed a smaller but significant reference-electrode bias; ranking showed no significant biases in either dimension. Ranking and matching were also evaluated for starting-point bias (PSE vs. adaptive-track starting point), but neither showed significant effects. A response-distribution truncation model explained a nonsignificant bias for ranking but it could not fully explain the observed biases for discrimination or matching. It is concluded that (a) BI-CI interaural pitch comparisons are inconsistent across test methods; (b) biases must be evaluated in more than one dimension before accepting the results as valid; and (c) of the three methods tested, ranking was least susceptible to biases and therefore emerged as the optimal approach.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Estimulação Acústica , Orelha , Humanos , Percepção da Altura Sonora
6.
Trends Hear ; 22: 2331216518765514, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29623771

RESUMO

Current clinical practice in programming a cochlear implant (CI) for individuals with single-sided deafness (SSD) is to maximize the transmission of speech information via the implant, with the implicit assumption that this will also result in improved spatial-hearing abilities. However, binaural sensitivity is reduced by interaural place-of-stimulation mismatch, a likely occurrence with a standard CI frequency-to-electrode allocation table (FAT). As a step toward reducing interaural mismatch, this study investigated whether a test of interaural-time-difference (ITD) discrimination could be used to estimate the acoustic frequency yielding the best place match for a given CI electrode. ITD-discrimination performance was measured by presenting 300-ms bursts of 100-pulses-per-second electrical pulse trains to a single CI electrode and band-limited pulse trains with variable carrier frequencies to the acoustic ear. Listeners discriminated between two reference intervals (four bursts each with constant ITD) and a moving target interval (four bursts with variable ITD). For 17 out of the 26 electrodes tested across eight listeners, the function describing the relationship between ITD-discrimination performance and carrier frequency had a discernable peak where listeners achieved 70% to 100% performance. On average, this peak occurred 1.15 octaves above the CI manufacturer's default FAT. ITD discrimination shows promise as a method of estimating the cochlear place of stimulation for a given electrode, thereby providing information to optimize the FAT for SSD-CI listeners.


Assuntos
Implantes Cocleares , Surdez , Localização de Som , Estimulação Acústica , Adulto , Implante Coclear , Audição , Humanos , Masculino , Pessoa de Meia-Idade , Percepção da Fala
7.
Proc Biol Sci ; 274(1626): 2703-10, 2007 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17725979

RESUMO

The principal physical mechanism of sound generation is similar in songbirds and humans, despite large differences in their vocal organs. Whereas vocal fold dynamics in the human larynx are well characterized, the vibratory behaviour of the sound-generating labia in the songbird vocal organ, the syrinx, is unknown. We present the first high-speed video records of the intact syrinx during induced phonation. The syrinx of anaesthetized crows shows a vibration pattern of the labia similar to that of the human vocal fry register. Acoustic pulses result from short opening of the labia, and pulse generation alternates between the left and right sound sources. Spontaneously calling crows can also generate similar pulse characteristics with only one sound generator. Airflow recordings in zebra finches and starlings show that pulse tone sounds can be generated unilaterally, synchronously or by alternating between the two sides. Vocal fry-like dynamics therefore represent a common production mechanism for low-frequency sounds in songbirds. These results also illustrate that complex vibration patterns can emerge from the mechanical properties of the coupled sound generators in the syrinx. The use of vocal fry-like dynamics in the songbird syrinx extends the similarity to this unusual vocal register with mammalian sound production mechanisms.


Assuntos
Corvos/anatomia & histologia , Corvos/fisiologia , Vocalização Animal/fisiologia , Animais , Espectrografia do Som , Gravação em Vídeo
8.
J Acoust Soc Am ; 119(2): 1269-76, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16521788

RESUMO

The hearing threshold and critical ratios were estimated psycho-acoustically for captive wild-caught hooded crows by a yes/no procedure and the method of constant stimuli. Human subjects were tested in the same setup for direct comparison and to check for experimental artifacts. The hooded crows were found to have excellent low-frequency hearing capabilities compared to other passerine birds. Their hearing sensitivity is very close to that of humans at and below 5.6 kHz. The distribution of the critical ratios differed from that of the average bird and humans in being rather constant with frequency and not increasing monotonically. It furthermore showed a middle region of 5-6 dB lower critical ratio values between 500 Hz and 2 kHz. It is suggested that this improved range for hearing in noise is an adaptation to long distance communication. Human critical ratios gave the expected values and were between 3 and 6 dB lower than those of the crows.


Assuntos
Corvos/fisiologia , Audição/fisiologia , Adaptação Fisiológica , Adulto , Animais , Limiar Auditivo/fisiologia , Condicionamento Psicológico , Feminino , Humanos , Masculino , Percepção da Altura Sonora/fisiologia , Psicoacústica , Fatores de Tempo , Vocalização Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA