Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 9(6)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503340

RESUMO

Recently, Vulpia myuros has become a problematic grass weed species in parts of Europe. It is most common in no-till cropping systems. The inherent tolerance to several selective grass weed herbicides is of serious concern to the successful management of V. myuros in arable farming. Here, we reviewed the available knowledge about the biology of V. myuros to identify knowledge gaps and assess management efforts to identify best practices for control. V. myuros is a winter-annual species producing seeds with a short dormancy that can germinate at a wide range of conditions. Seed longevity in the soil is short. Little information is available on the influence of V. myuros on crop yield but some results suggest that yield losses can be significant. The findings provide a better understanding of the weedy characteristics of V. myuros and highlight that management strategies in Europe need to be diversified and integrate preventive and cultural control methods. Finally, we identify some of the management tools that should be considered to minimize the impact of V. myuros on European farming and future needs for research to develop sustainable integrated weed management strategies.

2.
Sensors (Basel) ; 16(11)2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27827908

RESUMO

The stricter legislation within the European Union for the regulation of herbicides that are prone to leaching causes a greater economic burden on the agricultural industry through taxation. Owing to the increased economic burden, research in reducing herbicide usage has been prompted. High-resolution images from digital cameras support the studying of plant characteristics. These images can also be utilized to analyze shape and texture characteristics for weed identification. Instead of detecting weed patches, weed density can be estimated at a sub-patch level, through which even the identification of a single plant is possible. The aim of this study is to adapt the monocot and dicot coverage ratio vision (MoDiCoVi) algorithm to estimate dicotyledon leaf cover, perform grid spraying in real time, and present initial results in terms of potential herbicide savings in maize. The authors designed and executed an automated, large-scale field trial supported by the Armadillo autonomous tool carrier robot. The field trial consisted of 299 maize plots. Half of the plots (parcels) were planned with additional seeded weeds; the other half were planned with naturally occurring weeds. The in-situ evaluation showed that, compared to conventional broadcast spraying, the proposed method can reduce herbicide usage by 65% without measurable loss in biological effect.


Assuntos
Herbicidas/análise , Agricultura , Algoritmos , Produtos Agrícolas/química , Folhas de Planta/química , Zea mays/química
3.
Pest Manag Sci ; 67(6): 616-25, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21445942

RESUMO

The possibility of combining novel monitoring techniques and precision spraying for crop protection in the future is discussed. A generic model for an innovative crop protection system has been used as a framework. This system will be able to monitor the entire cropping system and identify the presence of relevant pests, diseases and weeds online, and will be location specific. The system will offer prevention, monitoring, interpretation and action which will be performed in a continuous way. The monitoring is divided into several parts. Planting material, seeds and soil should be monitored for prevention purposes before the growing period to avoid, for example, the introduction of disease into the field and to ensure optimal growth conditions. Data from previous growing seasons, such as the location of weeds and previous diseases, should also be included. During the growing season, the crop will be monitored at a macroscale level until a location that needs special attention is identified. If relevant, this area will be monitored more intensively at a microscale level. A decision engine will analyse the data and offer advice on how to control the detected diseases, pests and weeds, using precision spray techniques or alternative measures. The goal is to provide tools that are able to produce high-quality products with the minimal use of conventional plant protection products. This review describes the technologies that can be used or that need further development in order to achieve this goal.


Assuntos
Agricultura/métodos , Produtos Agrícolas/economia , Monitoramento Ambiental/métodos , Controle Biológico de Vetores/tendências , Tecnologia/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...