Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tetrahedron ; 1032022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35685987

RESUMO

Biosynthesis of spinosyn A in Saccharopolyspora spinosa involves a 1,4-dehydration followed by an intramolecular [4 + 2]-cycloaddition catalyzed by SpnM and SpnF, respectively. The cycloaddition also takes place in the absence of SpnF leading to questions regarding its mechanism of catalysis and biosynthetic role. Substrate analogs were prepared with an unactivated dienophile or an acyclic structure and found to be unreactive consistent with the importance of these features for cyclization. The SpnM-catalyzed dehydration reaction was also found to yield a byproduct corresponding to the C11 = C12 cis isomer of the SpnF substrate. This byproduct is stable both in the presence and absence of SpnF; however, relative production of the SpnM product and byproduct could be shifted in favor of the former by including SpnF or the dehydrogenase SpnJ in the reaction. This result suggests a potential interplay between the enzymes of spinosyn A biosynthesis that may help to improve the efficiency of the pathway.

2.
Proc Natl Acad Sci U S A ; 115(5): E848-E855, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29348209

RESUMO

SpnF is the first monofunctional Diels-Alder/[6+4]-ase that catalyzes a reaction leading to both Diels-Alder and [6+4] adducts through a single transition state. The environment-perturbed transition-state sampling method has been developed to calculate free energies, kinetic isotope effects, and quasi-classical reaction trajectories of enzyme-catalyzed reactions and the uncatalyzed reaction in water. Energetics calculated in this way reproduce the experiment and show that the normal Diels-Alder transition state is stabilized by H bonds with water molecules, while the ambimodal transition state is favored in the enzyme SpnF by both intramolecular hydrogen bonding and hydrophobic binding. Molecular dynamics simulations show that trajectories passing through the ambimodal transition state bifurcate to the [6+4] adduct and the Diels-Alder adduct with a ratio of 1:1 in the gas phase, 1:1.6 in water, and 1:11 in the enzyme. This example shows how an enzyme acts on a vibrational time scale to steer post-transition state trajectories toward the Diels-Alder adduct.


Assuntos
Proteínas de Bactérias/metabolismo , Macrolídeos/metabolismo , Água/química , Catálise , Reação de Cicloadição , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Químicos , Conformação Molecular , Simulação de Dinâmica Molecular , Teoria Quântica , Saccharopolyspora/enzimologia , Software
3.
Proc Natl Acad Sci U S A ; 114(39): 10408-10413, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28874588

RESUMO

The Diels-Alder reaction is one of the most common methods to chemically synthesize a six-membered carbocycle. While it has long been speculated that the cyclohexene moiety found in many secondary metabolites is also introduced via similar chemistry, the enzyme SpnF involved in the biosynthesis of the insecticide spinosyn A in Saccharopolyspora spinosa is the first enzyme for which catalysis of an intramolecular [Formula: see text]-cycloaddition has been experimentally verified as its only known function. Since its discovery, a number of additional standalone [Formula: see text]-cyclases have been reported as potential Diels-Alderases; however, whether their catalytic cycles involve a concerted or stepwise cyclization mechanism has not been addressed experimentally. Here, we report direct experimental interrogation of the reaction coordinate for the [Formula: see text]-carbocyclase SpnF via the measurement of [Formula: see text]-secondary deuterium kinetic isotope effects (KIEs) at all sites of [Formula: see text] rehybridization for both the nonenzymatic and enzyme-catalyzed cyclization of the SpnF substrate. The measured KIEs for the nonenzymatic reaction are consistent with previous computational results implicating an intermediary state between formation of the first and second carbon-carbon bonds. The KIEs measured for the enzymatic reaction suggest a similar mechanism of cyclization within the enzyme active site; however, there is evidence that conformational restriction of the substrate may play a role in catalysis.


Assuntos
Reação de Cicloadição , Macrolídeos/metabolismo , Metiltransferases/metabolismo , Domínio Catalítico/fisiologia , Saccharopolyspora/enzimologia , Saccharopolyspora/metabolismo
4.
Chem Rev ; 117(8): 5367-5388, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28441874

RESUMO

[4 + 2]-Cycloadditions are increasingly being recognized in the biosynthetic pathways of many structurally complex natural products. A relatively small collection of enzymes from these pathways have been demonstrated to increase rates of cyclization and impose stereochemical constraints on the reactions. While mechanistic investigation of these enzymes is just beginning, recent studies have provided new insights with implications for understanding their biosynthetic roles, mechanisms of catalysis, and evolutionary origin.


Assuntos
Alquil e Aril Transferases/química , Produtos Biológicos/química , Reação de Cicloadição , Estereoisomerismo
5.
Angew Chem Int Ed Engl ; 53(49): 13553-7, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25287333

RESUMO

Following the biosynthesis of polyketide backbones by polyketide synthases (PKSs), post-PKS modifications result in a significantly elevated level of structural complexity that renders the chemical synthesis of these natural products challenging. We report herein a total synthesis of the widely used polyketide insecticide spinosyn A by exploiting the prowess of both chemical and enzymatic methods. As more polyketide biosynthetic pathways are characterized, this chemoenzymatic approach is expected to become readily adaptable to streamlining the synthesis of other complex polyketides with more elaborate post-PKS modifications.


Assuntos
Inseticidas/síntese química , Inseticidas/metabolismo , Macrolídeos/síntese química , Macrolídeos/metabolismo , Policetídeo Sintases/metabolismo , Saccharopolyspora/enzimologia , Vias Biossintéticas , Inseticidas/química , Macrolídeos/química , Saccharopolyspora/química , Saccharopolyspora/metabolismo
6.
Biochemistry ; 53(26): 4292-301, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24945604

RESUMO

Spinosyns A and D (spinosad) are complex polyketide natural products biosynthesized through the cooperation of a modular polyketide synthase and several tailoring enzymes. SpnP catalyzes the final tailoring step, transferring forosamine from a TDP-D-forosamine donor substrate to a spinosyn pseudoaglycone acceptor substrate. Sequence analysis indicated that SpnP belongs to a small group of glycosyltransferases (GTs) that require an auxiliary protein for activation. However, unlike other GTs in this subgroup, no putative auxiliary protein gene could be located in the biosynthetic gene cluster. To learn more about SpnP, the structures of SpnP and its complex with TDP were determined to 2.50 and 3.15 Å resolution, respectively. Binding of TDP causes the reordering of several residues in the donor substrate pocket. SpnP possesses a structural feature that has only been previously observed in the related glycosyltransferase EryCIII, in which it mediates association with the auxiliary protein EryCII. This motif, H-X-R-X5-D-X5-R-X12-20-D-P-X3-W-L-X12-18-E-X4-G, may be predictive of glycosyltransferases that interact with an auxiliary protein. A reverse glycosyl transfer assay demonstrated that SpnP possesses measurable activity in the absence of an auxiliary protein. Our data suggest that SpnP can bind its donor substrate by itself but that the glycosyl transfer reaction is facilitated by an auxiliary protein that aids in the correct folding of a flexible loop surrounding the pseudoaglycone acceptor substrate-binding pocket.


Assuntos
Proteínas de Bactérias/química , Glicosiltransferases/química , Dobramento de Proteína , Saccharopolyspora/enzimologia , Cristalografia por Raios X , Macrolídeos/metabolismo , Estrutura Terciária de Proteína , Especificidade por Substrato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...