Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Antimicrob Agents ; 63(2): 107054, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072166

RESUMO

The emergence of multidrug-resistant (MDR) Klebsiella pneumoniae strains causes severe problems in the treatment of bacterial infections owing to limited treatment options. Especially, carbapenem-resistant Klebsiella pneumoniae (CRKP) is rapidly spreading worldwide and is emerging as a new cause of drug-resistant healthcare-associated infections. CRKP also has been announced by the Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) as one of the most pressing antibiotic resistance threats. Antimicrobial peptides (AMPs) are drawing considerable attention as ideal antibiotic alternative candidates to combat MDR bacterial infections. In a previous study, Osmin is composed of 17 amino acids and is isolated from solitary bee (Osmia rufa) venom. Herein, we evaluated the potential of Osmin to be used against drug-resistant K. pneumoniae as an alternative to conventional antibiotics. Osmin exhibited significant antimicrobial and anti-biofilm activity and lower toxicity than melittin, a well-known bee venom peptide. Additionally, we confirmed that it possesses a bactericidal mechanism that rapidly destroys bacterial membranes. Osmin was relatively more stable than melittin under the influence of various environmental factors and unlike conventional antibiotics, it exhibited a low bacterial resistance risk. During in vivo tests, Osmin reduced bacterial growth and the expression of pro-inflammatory cytokines and fibrosis-related genes in mice with CRKP-induced sepsis. Overall, our results indicate a high potential for Osmin to be used as a valuable therapeutic agent against drug-resistant K. pneumoniae infections.


Assuntos
Anti-Infecciosos , Venenos de Abelha , Infecções por Klebsiella , Abelhas , Camundongos , Animais , Klebsiella pneumoniae , Peptídeos Antimicrobianos , Venenos de Abelha/farmacologia , Venenos de Abelha/uso terapêutico , Meliteno/farmacologia , Meliteno/uso terapêutico , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Testes de Sensibilidade Microbiana
2.
J Biotechnol ; 281: 161-167, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30016739

RESUMO

Fatty acids have a low permeability through the cell membrane. Therefore, the intracellular biotransformation of fatty acids can be slow due to supply limitations. The effects of expression level of the fatty acid transporter FadL in Escherichia coli on the biotransformations were investigated. The enhanced expression of FadL led to 5.5-fold increase of the maximum reaction rate Vmax (i.e., 200 µmol/min per g dry cells (200 U/g dry cells)) of the recombinant E. coli expressing a hydratase of Stenotrophomonas maltophilia in the periplasm with respect to hydration of oleic acid. The FadL expression level was also critical for oxidation of 12- and 10- hydroxyoctadecanoic acid by the recombinant E. coli expressing an alcohol dehydrogenase (ADH) of Micrococcus luteus. In addition, the multistep biotransformation of ricinoleic acid into the ester (i.e., (Z)-11-(heptanoyloxy)undec-9-enoic acid) by the recombinant E. coli expressing the ADH of M. luteus and a Baeyer-Villiger monooxygenase of Pseudomonas putida KT2440 was 2-fold increased to 40 U/g dry cells with expression of FadL to an appropriate level. The FadL expression level is one of the critical factors to determine whole-cell biotransformation rates of not only long chain fatty acids but also hydroxy fatty acids. This study may contribute to whole-cell biocatalyst engineering for biotransformation of hydrophobic substances.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Álcool Desidrogenase/genética , Bactérias/genética , Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Biotransformação , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Ácido Graxo/genética , Hidroliases/genética , Oxigenases de Função Mista/genética , Ácido Oleico/metabolismo
3.
Sci Rep ; 8(1): 10280, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980730

RESUMO

Baeyer-Villiger monooxygenases (BVMOs) can be used for the biosynthesis of lactones and esters from ketones. However, the BVMO-based biocatalysts are not so stable under process conditions. Thereby, this study focused on enhancing stability of the BVMO-based biocatalysts. The biotransformation of ricinoleic acid into (Z)-11-(heptanoyloxy)undec-9-enoic acid by the recombinant Escherichia coli expressing the BVMO from Pseudomonas putida and an alcohol dehydrogenase from Micrococcus luteus was used as a model system. After thorough investigation of the key factors to influence stability of the BVMO, Cys302 was identified as an engineering target. The substitution of Cys302 to Leu enabled the engineered enzyme (i.e., E6BVMOC302L) to become more stable toward oxidative and thermal stresses. The catalytic activity of E6BVMOC302L-based E. coli biocatalysts was also greater than the E6BVMO-based biocatalysts. Another factor to influence biocatalytic performance of the BVMO-based whole-cell biocatalysts was availability of carbon and energy source during biotransformations. Glucose feeding into the reaction medium led to a marked increase of final product concentrations. Overall, the bioprocess engineering to improve metabolic stability of host cells in addition to the BVMO engineering allowed us to produce (Z)-11-(heptanoyloxy)undec-9-enoic acid to a concentration of 132 mM (41 g/L) from 150 mM ricinoleic acid within 8 h.


Assuntos
Biocatálise , Escherichia coli/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Pseudomonas putida/enzimologia , Ácidos Ricinoleicos/metabolismo , Sequência de Aminoácidos , Biotransformação , Oxigenases de Função Mista/genética , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Estresse Oxidativo , Conformação Proteica , Homologia de Sequência
4.
Sci Rep ; 6: 28223, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27311560

RESUMO

Baeyer-Villiger monooxygenases (BVMOs) are able to catalyze regiospecific Baeyer-Villiger oxygenation of a variety of cyclic and linear ketones to generate the corresponding lactones and esters, respectively. However, the enzymes are usually difficult to express in a functional form in microbial cells and are rather unstable under process conditions hindering their large-scale applications. Thereby, we investigated engineering of the BVMO from Pseudomonas putida KT2440 and the gene expression system to improve its activity and stability for large-scale biotransformation of ricinoleic acid (1) into the ester (i.e., (Z)-11-(heptanoyloxy)undec-9-enoic acid) (3), which can be hydrolyzed into 11-hydroxyundec-9-enoic acid (5) (i.e., a precursor of polyamide-11) and n-heptanoic acid (4). The polyionic tag-based fusion engineering of the BVMO and the use of a synthetic promoter for constitutive enzyme expression allowed the recombinant Escherichia coli expressing the BVMO and the secondary alcohol dehydrogenase of Micrococcus luteus to produce the ester (3) to 85 mM (26.6 g/L) within 5 h. The 5 L scale biotransformation process was then successfully scaled up to a 70 L bioreactor; 3 was produced to over 70 mM (21.9 g/L) in the culture medium 6 h after biotransformation. This study demonstrated that the BVMO-based whole-cell reactions can be applied for large-scale biotransformations.


Assuntos
Reatores Biológicos/microbiologia , Biotransformação/genética , Escherichia coli/genética , Oxigenases de Função Mista/genética , Ácidos Ricinoleicos/química , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Oxigenases de Função Mista/metabolismo , Pseudomonas putida/enzimologia , Pseudomonas putida/genética
5.
Appl Microbiol Biotechnol ; 99(15): 6267-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25636834

RESUMO

Enzyme fusion was investigated as a strategy to improve productivity of a two-step whole-cell biocatalysis. The biotransformation of long-chain sec-alcohols into esters by an alcohol dehydrogenase (ADH) and Baeyer-Villiger monooxygenases (BVMOs) was used as the model reaction. The recombinant Escherichia coli, expressing the fusion enzymes between the ADH of Micrococcus luteus NCTC2665 and the BVMO of Pseudomonas putida KT2440 or Rhodococcus jostii RHA1, showed significantly greater bioconversion activity with long-chain sec-alcohols (e.g., 12-hydroxyoctadec-9-enoic acid (1a), 13-hydroxyoctadec-9-enoic acid (2a), 14-hydroxyicos-11-enoic acid (4a)) when compared to the recombinant E. coli expressing the ADH and BVMOs independently. For instance, activity of the recombinant E. coli expressing the ADH-Gly-BVMO, in which glycine-rich peptide was used as the linker, with 1a was increased up to 22 µmol g dry cells(-1) min(-1). This value is over 40 % greater than the recombinant E. coli expressing the ADH and BVMO independently. The substantial improvement appeared to be driven by an increase in the functional expression of the BVMOs and/or an increase in mass transport efficiency by localizing two active sites in close proximity.


Assuntos
Álcool Desidrogenase/metabolismo , Álcoois/metabolismo , Ésteres/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Álcool Desidrogenase/genética , Biotransformação , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Micrococcus luteus/enzimologia , Micrococcus luteus/genética , Oxigenases de Função Mista/genética , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Proteínas Recombinantes de Fusão/genética , Rhodococcus/enzimologia , Rhodococcus/genética
6.
Biotechnol Bioeng ; 112(5): 889-95, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25545273

RESUMO

We demonstrated for the first time that the archaeal chaperones (i.e., γ-prefoldin and thermosome) can stabilize enzyme activity in vivo. Ricinoleic acid biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and the Pseudomonas putida KT2440 Baeyer-Villiger monooxygenase improved significantly with co-expression of γ-prefoldin or recombinant themosome originating from the deep-sea hyperthermophile archaea Methanocaldococcus jannaschii. Furthermore, the degree of enhanced activity was dependent on the expression levels of the chaperones. For example, whole-cell biotransformation activity was highest at 12 µmol/g dry cells/min when γ-prefoldin expression level was approximately 46% of the theoretical maximum. This value was approximately two-fold greater than that in E. coli, where the γ-prefoldin expression level was zero or set to the theoretical maximum. Therefore, it was assumed that the expression levels of chaperones must be optimized to achieve maximum biotransformation activity in whole-cell biocatalysts.


Assuntos
Álcool Desidrogenase/genética , Escherichia coli/genética , Methanocaldococcus/genética , Micrococcus luteus/enzimologia , Oxigenases de Função Mista/genética , Chaperonas Moleculares/genética , Pseudomonas putida/enzimologia , Álcool Desidrogenase/metabolismo , Biotransformação , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Methanocaldococcus/metabolismo , Micrococcus luteus/genética , Oxigenases de Função Mista/metabolismo , Chaperonas Moleculares/metabolismo , Pseudomonas putida/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácidos Ricinoleicos/metabolismo
7.
Angew Chem Int Ed Engl ; 52(9): 2534-7, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23362232

RESUMO

A multistep enzyme catalysis was successfully implemented to produce long-chain α,ω-dicarboxylic and ω-hydroxycarboxylic acids from renewable fatty acids and plant oils. Sebacic acid as well as ω-hydroxynonanoic acid and ω-hydroxytridec-11-enoic acid were produced from oleic and ricinoleic acid.


Assuntos
Ácidos Dicarboxílicos/síntese química , Ácidos Graxos/química , Óleos de Plantas/química , Ácidos Dicarboxílicos/análise , Ácidos Dicarboxílicos/química , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Pseudomonas fluorescens/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...