Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 6(17): 5049-5060, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35797240

RESUMO

Despite the clinical benefit associated with gilteritinib in relapsed/refractory acute myeloid leukemia (AML), most patients eventually develop resistance through unknown mechanisms. To delineate the mechanistic basis of resistance to gilteritinib, we performed targeted sequencing and scRNASeq on primary FLT3-ITD-mutated AML samples. Co-occurring mutations in RAS pathway genes were the most common genetic abnormalities, and unresponsiveness to gilteritinib was associated with increased expression of bone marrow-derived hematopoietic cytokines and chemokines. In particular, we found elevated expression of the TEK-family kinase, BMX, in gilteritinib-unresponsive patients pre- and post-treatment. BMX contributed to gilteritinib resistance in FLT3-mutant cell lines in a hypoxia-dependent manner by promoting pSTAT5 signaling, and these phenotypes could be reversed with pharmacological inhibition and genetic knockout. We also observed that inhibition of BMX in primary FLT3-mutated AML samples decreased chemokine secretion and enhanced the activity of gilteritinib. Collectively, these findings indicate a crucial role for microenvironment-mediated factors modulated by BMX in the escape from targeted therapy and have implications for the development of novel therapeutic interventions to restore sensitivity to gilteritinib.


Assuntos
Compostos de Anilina , Leucemia Mieloide Aguda , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Proteínas Tirosina Quinases/genética , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Microambiente Tumoral , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/uso terapêutico
2.
Pharm Res ; 39(8): 1749-1759, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35819583

RESUMO

The approval of four small interfering RNA (siRNA) products in the past few years has demonstrated unequivocally the therapeutic potential of this novel modality. Three such products (givosiran, lumasiran and inclisiran) are liver-targeted, using tris N-acetylgalactosamine (GalNAc)3 as the targeting ligand. Upon subcutaneous administration, GalNAc-conjugated siRNAs rapidly distribute into the liver via asialoglycoprotein receptor (ASGPR) mediated uptake in the hepatocytes, resulting in fast elimination from the systemic circulation. Patisiran, on the other hand, has been formulated in a lipid nanoparticle for optimal delivery to the liver. While several publications have described preclinical and clinical pharmacokinetic (PK) and pharmacodynamic (PD) results, including absorption, distribution, metabolism, and elimination (ADME) profiles in selected species as well as limited modeling efforts for siRNA therapeutics, there is no systematic review of the PK and PD models developed for these agents or work summarizing the utility and application(s) of such models in drug development and regulatory review. Here, we provide a mini-review of the current state of modeling efforts for siRNA therapeutics within the early preclinical, translational, and clinical stages of siRNA development. Diverse modeling methods including simple compartmental, mechanistic and systems PK/PD, physiologically-based PK (PBPK), population PK/PD, and dose-response-time models are introduced and reviewed. The utility of such models in development and regulatory review for siRNA therapeutics is also discussed with examples. Finally, the current knowledge gaps in mechanism of action of siRNA and resulting challenges in model development are summarized. The goal of this minireview is to trigger cross-functional discussion amongst all key stakeholders to generate key experimental datasets and align on current assumptions, model structures, and approaches to facilitate development and application of robust PK/PD models for siRNA therapeutics.


Assuntos
Nanopartículas , Lipossomos , Modelos Biológicos , Nanopartículas/química , RNA Interferente Pequeno/genética
3.
Cancers (Basel) ; 15(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36612026

RESUMO

Acute myeloid leukemia (AML) with mutations in the tumor suppressor gene TP53 confers a dismal prognosis with 3-year overall survival of <5%. While inhibition of kinases involved in cell cycle regulation induces synthetic lethality in a variety of TP53 mutant cancers, this strategy has not been evaluated in mutant TP53 AML. Previously, we demonstrated that TP-0903 is a novel multikinase inhibitor with low nM activity against AURKA/B, Chk1/2, and other cell cycle regulators. Here, we evaluated the preclinical activity of TP-0903 in TP53 mutant AML cell lines, including a single-cell clone of MV4-11 containing a TP53 mutation (R248W), Kasumi-1 (R248Q), and HL-60 (TP 53 null). TP-0903 inhibited cell viability (IC50, 12−32 nM) and induced apoptosis at 50 nM. By immunoblot, 50 nM TP-0903 upregulated pChk1/2 and pH2AX, suggesting induction of DNA damage. The combination of TP-0903 and decitabine was additive in vitro, and in vivo significantly prolonged median survival compared to single-agent treatments in mice xenografted with HL-60 (vehicle, 46 days; decitabine, 55 days; TP-0903, 63 days; combination, 75 days) or MV4-11 (R248W) (51 days; 62 days; 81 days; 89 days) (p < 0.001). Together, these results provide scientific premise for the clinical evaluation of TP-0903 in combination with decitabine in TP53 mutant AML.

4.
Blood Adv ; 5(23): 5041-5046, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34614509

RESUMO

Drug resistance and relapse are common challenges in acute myeloid leukemia (AML), particularly in an aggressive subset bearing internal tandem duplications (ITDs) of the FLT3 receptor (FLT3-ITD+). The tyrosine kinase inhibitor gilteritinib is approved for the treatment of relapse/refractory AML with FLT3 mutations, yet resistance to gilteritinib remains a clinical concern, and the underlying mechanisms remain incompletely understood. Using transcriptomic analyses and functional validation studies, we identified the calcium-binding proteins S100A8 and S100A9 (S100A8/A9) as contributors to gilteritinib resistance in FLT3-ITD+ AML. Exposure of FLT3-ITD+ AML cells to gilteritinib increased S100A8/A9 expression in vivo and in vitro and decreased free calcium levels, and genetic manipulation of S100A9 was associated with altered sensitivity to gilteritinib. Using a transcription factor screen, we identified the transcriptional corepressor BCL6, as a regulator of S100A9 expression and found that gilteritinib decreased BCL6 binding to the S100A9 promoter, thereby increasing S100A9 expression. Furthermore, pharmacological inhibition of BCL6 accelerated the growth rate of gilteritinib-resistant FLT3-ITD+ AML cells, suggesting that S100A9 is a functional target of BCL6. These findings shed light on mechanisms of resistance to gilteritinib through regulation of a target that can be therapeutically exploited to enhance the antileukemic effects of gilteritinib.


Assuntos
Leucemia Mieloide Aguda , Compostos de Anilina , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas c-bcl-6 , Pirazinas , Regulação para Cima
5.
Mol Cancer Ther ; 20(11): 2207-2217, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34518298

RESUMO

Acute myeloid leukemia (AML) with an FLT3 internal tandem duplication (FLT3-ITD) mutation is an aggressive hematologic malignancy associated with frequent relapse and poor overall survival. The tyrosine kinase inhibitor gilteritinib is approved for the treatment of relapse/refractory AML with FLT3 mutations, yet its mechanism of action is not completely understood. Here, we sought to identify additional therapeutic targets that can be exploited to enhance gilteritinib's antileukemic effect. Based on unbiased transcriptomic analyses, we identified the glutamine transporter SNAT1 (SLC38A1) as a novel target of gilteritinib that leads to impaired glutamine uptake and utilization within leukemic cells. Using metabolomics and metabolic flux analyses, we found that gilteritinib decreased glutamine metabolism through the TCA cycle and cellular levels of the oncometabolite 2-hydroxyglutarate. In addition, gilteritinib treatment was associated with decreased ATP production and glutathione synthesis and increased reactive oxygen species, resulting in cellular senescence. Finally, we found that the glutaminase inhibitor CB-839 enhanced antileukemic effect of gilteritinib in ex vivo studies using human primary FLT3-ITD-positive AML cells harboring mutations in the enzyme isocitrate dehydrogenase, which catalyzes the oxidative decarboxylation of isocitrate, producing α-ketoglutarate. Collectively, this work has identified a previously unrecognized, gilteritinib-sensitive metabolic pathway downstream of SLC38A1 that causes decreased glutaminolysis and disruption of redox homeostasis. These findings provide a rationale for the development and therapeutic exploration of targeted combinatorial treatment strategies for this subset of relapse/refractory AML.


Assuntos
Compostos de Anilina/uso terapêutico , Glutamina/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Pirazinas/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/metabolismo , Compostos de Anilina/farmacologia , Animais , Feminino , Humanos , Camundongos , Pirazinas/farmacologia
6.
JCI Insight ; 5(23)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33268594

RESUMO

Effective treatment for AML is challenging due to the presence of clonal heterogeneity and the evolution of polyclonal drug resistance. Here, we report that TP-0903 has potent activity against protein kinases related to STAT, AKT, and ERK signaling, as well as cell cycle regulators in biochemical and cellular assays. In vitro and in vivo, TP-0903 was active in multiple models of drug-resistant FLT3 mutant AML, including those involving the F691L gatekeeper mutation and bone marrow microenvironment-mediated factors. Furthermore, TP-0903 demonstrated preclinical activity in AML models with FLT3-ITD and common co-occurring mutations in IDH2 and NRAS genes. We also showed that TP-0903 had ex vivo activity in primary AML cells with recurrent mutations including MLL-PTD, ASXL1, SRSF2, and WT1, which are associated with poor prognosis or promote clinical resistance to AML-directed therapies. Our preclinical studies demonstrate that TP-0903 is a multikinase inhibitor with potent activity against multiple drug-resistant models of AML that will have an immediate clinical impact in a heterogeneous disease like AML.


Assuntos
Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Duplicação Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Camundongos , Camundongos Nus , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Pirimidinas/metabolismo , Sulfonamidas/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Hematol Oncol ; 13(1): 8, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992353

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is the most common type of adult leukemia. Several studies have demonstrated that oncogenesis in AML is enhanced by kinase signaling pathways such as Src family kinases (SFK) including Src and Lyn, spleen tyrosine kinase (SYK), and bruton's tyrosine kinase (BTK). Recently, the multi-kinase inhibitor ArQule 531 (ARQ 531) has demonstrated potent inhibition of SFK and BTK that translated to improved pre-clinical in vivo activity as compared with the irreversible BTK inhibitor ibrutinib in chronic lymphocytic leukemia (CLL) models. Given the superior activity of ARQ 531 in CLL, and recognition that this molecule has a broad kinase inhibition profile, we pursued its application in pre-clinical models of AML. METHODS: The potency of ARQ 531 was examined in vitro using FLT3 wild type and mutated (ITD) AML cell lines and primary samples. The modulation of pro-survival kinases following ARQ 531 treatment was determined using AML cell lines. The effect of SYK expression on ARQ 531 potency was evaluated using a SYK overexpressing cell line (Ba/F3 murine cells) constitutively expressing FLT3-ITD. Finally, the in vivo activity of ARQ 531 was evaluated using MOLM-13 disseminated xenograft model. RESULTS: Our data demonstrate that ARQ 531 treatment has anti-proliferative activity in vitro and impairs colony formation in AML cell lines and primary AML cells independent of the presence of a FLT3 ITD mutation. We demonstrate decreased phosphorylation of oncogenic kinases targeted by ARQ 531, including SFK (Tyr416), BTK, and fms-related tyrosine kinase 3 (FLT3), ultimately leading to changes in down-stream targets including SYK, STAT5a, and ERK1/2. Based upon in vitro drug synergy data, we examined ARQ 531 in the MOLM-13 AML xenograft model alone and in combination with venetoclax. Despite ARQ 531 having a less favorable pharmacokinetics profile in rodents, we demonstrate modest single agent in vivo activity and synergy with venetoclax. CONCLUSIONS: Our data support consideration of the application of ARQ 531 in combination trials for AML targeting higher drug concentrations in vivo.


Assuntos
Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/metabolismo
8.
Invest New Drugs ; 38(2): 340-349, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31102119

RESUMO

Activating FLT3 internal tandem duplication (FLT3-ITD) mutations in acute myeloid leukemia (AML) associate with inferior outcomes. We determined that pacritinib, a JAK2/FLT3 inhibitor, has in vitro activity against FLT3-ITD and tyrosine kinase domain (TKD) mutations. Therefore, we conducted a phase I study of pacritinib in combination with chemotherapy in AML patients with FLT3 mutations to determine the pharmacokinetics and preliminary toxicity and clinical activity. Pacritinib was administered at a dose of 100 mg or 200 mg twice daily following a 3 + 3 dose-escalation in combination with cytarabine and daunorubicin (cohort A) or with decitabine induction (cohort B). A total of thirteen patients were enrolled (five in cohort A; eight in cohort B). Dose limiting toxicities include hemolytic anemia and grade 3 QTc prolongation in two patients who received 100 mg. Complete remission was achieved in two patients in cohort A, one of whom had a minor D835Y clone at baseline. One patient in cohort B achieved morphologic leukemia free state. Seven patients (two in cohort A; five in cohort B) had stable disease. In conclusion, pacritinib, an inhibitor of FLT3-ITD and resistant-conferring TKD mutations, was well tolerated and demonstrated preliminary anti-leukemic activity in combination with chemotherapy in patients with FLT3 mutations.


Assuntos
Antineoplásicos/uso terapêutico , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Janus Quinase 2/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Adulto , Idoso , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Hidrocarbonetos Aromáticos com Pontes/efeitos adversos , Hidrocarbonetos Aromáticos com Pontes/farmacocinética , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citarabina/efeitos adversos , Citarabina/uso terapêutico , Daunorrubicina/efeitos adversos , Daunorrubicina/uso terapêutico , Decitabina/efeitos adversos , Decitabina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Mutação , Projetos Piloto , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/efeitos adversos , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
10.
Maxillofac Plast Reconstr Surg ; 41(1): 25, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31321221

RESUMO

BACKGROUND: Brain abscess is a life-threatening condition that occurs due to complications during a neurosurgical procedure, direct cranial trauma, or the presence of local or distal infection. Infection in the oral cavity can also be considered a source of brain abscess. CASE PRESENTATION: A 45-year-old male patient was transported with brain abscess in the subcortical white matter. Navigation-guided abscess aspiration and drainage was performed in the right mid-frontal lobe, but the symptoms continued to worsen after the procedure. A panoramic radiograph showed alveolar bone resorption around the maxillary molars. The compromised maxillary molars were extracted under local anesthesia, and antibiotics were applied based on findings from bacterial culture. A brain MRI confirmed that the three brain abscesses in the frontal lobe were reduced in size, and the patient's symptoms began to improve after the extractions. CONCLUSION: This is a rare case report about multiple uncontrolled brain abscesses treated by removal of infection through the extraction of maxillary molars with odontogenic infection. Untreated odontogenic infection can also be considered a cause of brain abscess. Therefore, it is necessary to recognize the possibility that untreated odontogenic infection can lead to serious systemic inflammatory diseases such as brain abscess. Through a multidisciplinary approach to diagnosis and treatment, physicians should be encouraged to consider odontogenic infections as a potential cause of brain abscesses.

11.
Nat Commun ; 10(1): 2189, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097698

RESUMO

Improvement in survival has been achieved for children and adolescents with AML but is largely attributed to enhanced supportive care as opposed to the development of better treatment regimens. High risk subtypes continue to have poor outcomes with event free survival rates <40% despite the use of high intensity chemotherapy in combination with hematopoietic stem cell transplant. Here we combine high-throughput screening, intracellular accumulation assays, and in vivo efficacy studies to identify therapeutic strategies for pediatric AML. We report therapeutics not currently used to treat AML, gemcitabine and cabazitaxel, have broad anti-leukemic activity across subtypes and are more effective relative to the AML standard of care, cytarabine, both in vitro and in vivo. JAK inhibitors are selective for acute megakaryoblastic leukemia and significantly prolong survival in multiple preclinical models. Our approach provides advances in the development of treatment strategies for pediatric AML.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Desoxicitidina/análogos & derivados , Inibidores de Janus Quinases/farmacologia , Leucemia Experimental/tratamento farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Adulto , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Medula Óssea/patologia , Medula Óssea/efeitos da radiação , Transplante de Medula Óssea , Linhagem Celular Tumoral , Criança , Pré-Escolar , Citarabina/farmacologia , Citarabina/uso terapêutico , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Intervalo Livre de Doença , Feminino , Ensaios de Triagem em Larga Escala/métodos , Humanos , Lactente , Inibidores de Janus Quinases/uso terapêutico , Leucemia Experimental/etiologia , Leucemia Experimental/mortalidade , Leucemia Experimental/patologia , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Taxoides/farmacologia , Taxoides/uso terapêutico , Irradiação Corporal Total/efeitos adversos , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem , Gencitabina
12.
Clin Pharmacol Ther ; 102(5): 726-730, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28795397

RESUMO

Tremendous progress has been made by utilizing kinase inhibitors in oncology, and these agents continue to pave the way into other areas of medicine. There are, however, many challenges to the application of kinase inhibitors due to inherent shortcomings of the drugs and lack of comprehensive understanding of tumor and disease biology. The future fate of kinase inhibitors, however, is bright, as evidenced from ongoing efforts to increase their efficacy while remediating their weaknesses in order to provide the best quality of care to patients.


Assuntos
Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Oncologia/métodos , Oncologia/tendências , Neoplasias/enzimologia , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia
13.
ACS Omega ; 2(5): 1985-2009, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28580438

RESUMO

Profiling of the kinase-binding capabilities of an aminopyrimidine analogue detected in a cellular screen of the St. Jude small-molecule collection led to the identification of a novel series of FMS-like tyrosine kinase 3 (FLT3) inhibitors. Structure-activity relationship studies led to the development of compounds exhibiting good potency against MV4-11 and MOLM13 acute myelogenous leukemia cells driven by FLT3, regardless of their FLT3 mutation status. In vitro pharmacological profiling demonstrated that compound 5e shows characteristics suitable for further preclinical development.

14.
Pharm Res ; 31(5): 1302-14, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24297070

RESUMO

PURPOSE: To investigate the effect of polyelectrolytes on the formation and physicochemical properties of chitosan nanoparticles (CS-NPs) used for the delivery of an anticancer drug, doxorubicin (DOX). METHOD: Three DOX-loaded CS-NPs were formulated with tripolyphosphate (CS-TP/DOX NPs), dextran sulfate (CS-DS/DOX NPs), and hyaluronic acid (CS-HA/DOX NPs) by using ionotropic gelation or complex coacervation. RESULTS: CS-TP/DOX NPs were the smallest, with an average size of ~100 nm and a narrow size distribution, while CS-DS/DOX and CS-HA/DOX NPs were ~200 nm in size. Transmission electron microscopy clearly showed a spherical shape for all the NPs. The strong binding affinity of DOX for the multiple sulfate groups in DS resulted in a sustained release profile from CS-DS/DOX NPs at pH 7.4, while CS-HA/DOX NPs exhibited faster DOX release. This trend was also present under acidic conditions, where release of DOX was significantly augmented because of polymer protonation. Compared to CS-TP/DOX or CS-DS/DOX NPs, CS-HA/DOX NPs showed superior cellular uptake and cytotoxicity in MCF-7 and A-549 cells, because of their ability to undergo CD44-mediated endocytosis. Pharmacokinetic studies clearly showed that all CS-NPs tested significantly improved DOX plasma circulation time and decreased its elimination rate constant. Consistent with the in vitro release data, CS-DS/DOX NPs exhibited a relatively better DOX plasma profile and enhanced blood circulation, compared to CS-HA/DOX or CS-TP/DOX NPs. Overall, these results demonstrated how NP design can influence their function. CONCLUSIONS: Taken together, CS-based polyelectrolyte complexes could provide a versatile delivery system with enormous potential in the pharmaceutical and biomedical sectors.


Assuntos
Quitosana/química , Portadores de Fármacos , Eletrólitos/química , Nanopartículas , Animais , Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Humanos , Células MCF-7 , Masculino , Microscopia Eletrônica de Transmissão , Ratos , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...