Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012433

RESUMO

The emergence of resistant bacteria takes place, endangering the effectiveness of antibiotics. A reason for antibiotic resistance is the presence of lactamases that catalyze the hydrolysis of ß-lactam antibiotics. An inhibitor of serine-ß-lactamases such as clavulanic acid binds to the active site of the enzymes, thus solving the resistance problem. A pressing issue, however, is that the reaction mechanism of metallo-ß-lactamases (MBLs) hydrolyzing ß-lactam antibiotics differs from that of serine-ß-lactamases due to the existence of zinc ions in the active site of MBLs. Thus, the development of potential inhibitors for MBLs remains urgent. Here, the ability to inhibit MBL from Bacillus anthracis (Bla2) was investigated in silico and in vitro using compounds possessing two hydroxamate functional groups such as 3-chloro-N-hydroxy-4-(7-(hydroxyamino)-7-oxoheptyl)benzamide (Compound 4) and N-hydroxy-4-(7-(hydroxyamino)-7-oxoheptyl)-3-methoxybenzamide (Compound 6). In silico docking and molecular dynamics simulations revealed that both Compounds 4 and 6 were coordinated with zinc ions in the active site, suggesting that the hydroxamate group attached to the aromatic ring of the compound plays a crucial role in the coordination to the zinc ions. In vitro kinetic analysis demonstrated that the mode of inhibitions for Compounds 4 and 6 were a competitive inhibition with Ki values of 6.4 ± 1.7 and 4.7 ± 1.4 kcal/mol, respectively. The agreement between in silico and in vitro investigations indicates that compounds containing dihyroxamate moieties may offer a new avenue to overcome antibiotic resistance to bacteria.


Assuntos
Bacillus anthracis , beta-Lactamases , Antibacterianos/química , Antibacterianos/farmacologia , Bacillus anthracis/metabolismo , Ácido Clavulânico , Ácidos Hidroxâmicos/farmacologia , Cinética , Serina , Zinco , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo
2.
ACS Catal ; 12(3): 1764-1774, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35573128

RESUMO

Redox-neutral carbon-carbon (C-C) bond activation and functionalization strategies of cyclopropanols that give metallo homoenolate have offered merits to construct a range of useful ß-functionalized ketones in an inverse-polarity fashion. Discovery and identification of oxidative C-C activation reactions of cyclopropanols that generate metallo enolate-homoenolate would provide an opportunity to afford α,ß-difunctionalized ketones. We report catalytic, net oxidative C-C activation, and silylation of cyclopropanols with traceless acetal directing groups under consecutive Ir and Rh catalysis in regio-, stereo-, and chemo-selective fashion. In detail, Ir-catalyzed hydrosilylation of cyclopropyl acetates provides the acetal directing group in quantitative yield. Rh-catalyzed proximal C-C silylation of the resulting cyclopropyl silyl acetal produces the metallo enolate-homoenolate equivalent, dioxasilepine, which uniquely holds an interconnected ß-silyl moiety and Z-vinyl acetal. Upon sequential treatment of a silaphile that removes the acetal directing group and electrophile, the seven-membered silicon-containing heterocycle, serving as the ketone α,ß-dianion equivalent, delivers α,ß-difunctionalized ketones. Scope of the hitherto unexplored reactivity of cyclopropanols toward net oxidative C-C silylation and the versatility of the resulting dioxasilepines were demonstrated. These include late-stage, net oxidative C-C silylation of biologically relevant molecules and facile production of a range of α,ß-difunctionalized ketones. Preliminary mechanistic studies suggest that the C-C activation harnessing the electron-rich Wilkinson-type catalyst is likely the turnover-determining step and a Rh-π interaction is the key to the efficient metal insertion to the proximal C-C bond in cyclopropanols.

3.
Water Environ Res ; 94(1): e1671, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34854167

RESUMO

Treatment of highly persistent perfluoroalkyl and polyfluoroalkyl substances (PFAS) has been a challenging but significant task. Herein, we propose adsorption-mediated chemical decomposition of PFAS implemented by using granular activated carbon (GAC) impregnated with zerovalent nanoiron (ZVI, Fe0 ), so-called reactive activated carbon (RAC). The effects of reaction temperature, injection of persulfate (PS), and presence of soil on removal of PFAS in water were evaluated. Results showed that RAC conjugated with PS at 60°C exhibited decomposition of PFAS, exclusively all three carboxylic PFAS tested, obviously producing various identifiable short-chain PFAS. Carboxylic PFAS were removed via physical adsorption combined with chemical decomposition while sulfonic PFAS were removed via solely adsorption mechanism. The presence of soil particles did not greatly affect the overall removal of PFAS. Carbon mass balance suggested that chemical oxidation by radical mechanisms mutually influences, in a complex manner, PFAS adsorption to GAC, ZVI and its iron derivatives, and soil particles. Nonetheless, all tested six PFAS were removed significantly. If successfully developed, the adsorption-mediated decomposition strategy may work for treatment of complex media containing PFAS and co-contaminants under different environmental settings. PRACTITIONERS POINTS: Treatment of persistent per- and polyfluoroalkyl substances (PFAS) was addressed. Activated carbon with zerovalent iron was examined in the presence of persulfate. The system significantly removed and decomposed PFAS in water and soil mixture.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Carvão Vegetal , Solo , Água , Poluentes Químicos da Água/análise
4.
Nat Commun ; 12(1): 603, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504805

RESUMO

Two-dimensional (2D) growth-induced 3D shaping enables shape-morphing materials for diverse applications. However, quantitative design of 2D growth for arbitrary 3D shapes remains challenging. Here we show a 2D material programming approach for 3D shaping, which prints hydrogel sheets encoded with spatially controlled in-plane growth (contraction) and transforms them to programmed 3D structures. We design 2D growth for target 3D shapes via conformal flattening. We introduce the concept of cone singularities to increase the accessible space of 3D shapes. For active shape selection, we encode shape-guiding modules in growth that direct shape morphing toward target shapes among isometric configurations. Our flexible 2D printing process enables the formation of multimaterial 3D structures. We demonstrate the ability to create 3D structures with a variety of morphologies, including automobiles, batoid fish, and real human face.

5.
Talanta ; 223(Pt 2): 121781, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33298286

RESUMO

Organosilanes are used in a broad range of industrial, cosmetic, and personal care products. They serve as bridges between inorganic or organic substrates and organic/polymeric matrices. They are also versatile intermediates and can be used for a variety of synthetic applications. They do not exist naturally and have to be synthesized. Evaluation of intermediates and products resulting from the synthesis processes of organosilanes can be challenging. In this study, gas chromatography with vacuum ultraviolet spectroscopic detection (VUV) was used to analyze Si-containing compounds that are commercially available or were synthetically prepared. VUV measures full scan absorption in the range of 120-240 nm, a region that provides unique absorption signatures for chemical compounds. VUV absorption spectra of organosilanes showed rich and featured characteristics in this wavelength range. Theoretical computations of VUV absorption spectra based on time-dependent density functional theory were also explored as a complementary tool for identification. In addition, the synthesis process of isomeric benzodioxasiline compounds (ortho-, meta-, and para-) was monitored by GC-VUV. It was demonstrated that GC-VUV can be used for easy and rapid differentiation of organosilanes, including structural isomers.

6.
Nat Catal ; 2: 164-173, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31460492

RESUMO

Because of the importance of hydrogen atom transfer (HAT) in biology and chemistry, there is increased interest in new strategies to perform HAT in a sustainable manner. Here, we describe a sustainable, net redox-neutral HAT process involving hydrosilanes and alkali metal Lewis base catalysts - eliminating the use of transition metal catalysts - and report an associated mechanism concerning Lewis base-catalysed, complexation-induced HAT (LBCI-HAT). The catalytic LBCI-HAT is capable of accessing both branch-specific hydrosilylation and polymerization of vinylarenes in a highly selective fashion, depending on the Lewis base catalyst used. In this process, earth abundant, alkali metal Lewis base catalyst plays a dual role. It first serves as a HAT initiator and subsequently functions as a silyl radical stabilizing group, which is critical to highly selective cross-radical coupling. EPR study identified a potassiated paramagnetic species and multistate density function theory revealed a high HAT character, yet multiconfigurational nature in the transition state of the reaction.

7.
Lab Chip ; 19(18): 3054-3064, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31373597

RESUMO

This paper presents a microfluidic chemical reaction using an electrowetting-on-dielectric (EWOD) digital microfluidic device. Despite a number of chemical/biological applications using EWOD digital microfluidic devices, their applications to organic reactions have been seriously limited because most of the common solvents used in synthetic organic chemistry are not compatible with EWOD devices. To address this unsolved issue, we first introduce a novel technique using an "engine-and-cargo" system that enables the use of non-movable fluids (e.g., organic solvents) on an EWOD device. With esterification as the model reaction, on-chip chemical reactions were successfully demonstrated. Conversion data obtained from on-chip reactions were used to characterize and optimize the reaction with regard to reaction kinetics, solvent screening, and catalyst loading. As the first step toward on-chip combinatorial synthesis, parallel esterification of three different alcohols was demonstrated. Results from this study clearly show that an EWOD digital microfluidic platform is a promising candidate for microscale chemical reactions.

8.
ACS Catal ; 9(1): 402-408, 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31179157

RESUMO

We report a redox-neutral, catalytic C-C activation of cyclopropyl acetates to produce silicon-containing five-membered heterocycles in a highly region-and chemoselective fashion. The umpolung α-selective silylation leading to dioxasilolanes is opposed to contemporary ß-selective C-C functionalization protocols of cyclopropanols. Lewis base activation of dioxasilolanes as α-silyl carbinol equivalents undergoes the unconventional [1,2]-Brook rearrangement to form tertiary alcohols. Notably, mechanistic studies indicate that an electrophilic metal-π interaction harnessing highly fluorinated Tp (CF 3 ) 2 Rh(nbd) catalyst permitted a low-temperature C-C activation.

9.
Adv Sci (Weinh) ; 6(2): 1800703, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30693178

RESUMO

Motion in biological organisms often relies on the functional arrangement of anisotropic tissues that linearly expand and contract in response to external signals. However, a general approach that can implement such anisotropic behavior into synthetic soft materials and thereby produce complex motions seen in biological organisms remains a challenge. Here, a bioinspired approach is presented that uses temperature-responsive linear hydrogel actuators, analogous to biological linear contractile elements, as building blocks to create three-dimensional (3D) structures with programmed motions. This approach relies on a generalizable 3D printing method for building 3D structures of hydrogels using a fugitive carrier with shear-thinning properties. This study demonstrates that the metric incompatibility of an orthogonally growing bilayer structure induces a saddle-like shape change, which can be further exploited to produce various bioinspired motions from bending to twisting. The orthogonally growing bilayer structure undergoes a transition from a stretching-dominated motion to a bending-dominated motion during its shape transformation. The modular nature of this approach, together with the flexibility of additive manufacturing, enables the fabrication of multimodular 3D structures with complex motions through the assembly of multiple functional components, which in turn consist of simple linear contractile elements.

10.
Org Lett ; 20(17): 5158-5162, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30141634

RESUMO

Catalytic asymmetric syntheses of remote quaternary stereocenters have been developed by copper-catalyzed 1,4-hydrosilylation of γ,γ-disubstituted cyclohexadienones. A variety of cyclohexenones have been synthesized in good yield and excellent enantioselectivity. Versatile 2-silyloxy diene intermediates bearing γ,γ-disubstituted all carbon stereogenic centers can be isolated from the mild reaction conditions. The utility of this strategy is exemplified in a catalytic asymmetric total synthesis of (+)-mesembrine.

11.
Tetrahedron ; 73(29): 4052-4061, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28694551

RESUMO

Diversely substituted arylsilyl triflates, as aryne precursors for aryne cycloaddition reactions, were accessed from benzodioxasilines. Catalytic reductive C-H ortho-silylation of phenols with traceless acetal directing groups was exploited to prepare benzodioxasilines. Sequential addition of MeLi and then trifluoromethanesulfonic anhydride to benzodioxasilines provided arylsilyl triflates in a single pot. Notably, this approach was successfully utilized to prepare sterically hindered 1,2,3-trisubstituted arylsilyl triflates, which ultimately underwent fluoride-mediated aryne cycloaddition.

12.
Nanoscale Res Lett ; 12(1): 29, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28078609

RESUMO

For the last few years, molten salt nanomaterials have attracted many scientists for their enhanced specific heat by doping a minute concentration of nanoparticles (up to 1% by weight). Likewise, enhancing the specific heat of liquid media is important in many aspects of engineering such as engine oil, coolant, and lubricant. However, such enhancement in specific heat was only observed for molten salts, yet other engineering fluids such as water, ethylene glycol, and oil have shown a decrease of specific heat with doped nanoparticles. Recent studies have shown that the observed specific heat enhancement resulted from unique nanostructures that were formed by molten salt molecules when interacting with nanoparticles. Thus, such enhancement in specific heat is only possible for molten salts because other fluids may not naturally form such nanostructures. In this study, we hypothesized such nanostructures can be mimicked through in situ formation of fabricated nano-additives, which are putative nanoparticles coated with useful organic materials (e.g., polar-group-ended organic molecules) leading to superstructures, and thus can be directly used for other engineering fluids. We first applied this approach to polyalphaolefin (PAO). A differential scanning calorimeter (DSC), a rheometer, and a customized setup were employed to characterize the heat capacity, viscosity, and thermal conductivity of PAO and PAO with fabricated nano-additives. Results showed 44.5% enhanced heat capacity and 19.8 and 22.98% enhancement for thermal conductivity and viscosity, respectively, by an addition of only 2% of fabricated nanostructures in comparison with pure PAO. Moreover, a partial melting of the polar-group-ended organic molecules was observed in the first thermal cycle and the peak disappeared in the following cycles. This indicates that the in situ formation of fabricated nano-additives spontaneously occurs in the thermal cycle to form nanostructures. Figure of merit analyses have been performed for the PAO superstructure to evaluate its performance for heat storage and transfer media.

13.
Org Lett ; 18(20): 5324-5327, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27732000

RESUMO

Development of regio- and stereoselective dehydrogenative silylation and hydrosilylation of vinylarenes with alkoxysilanes, catalyzed by ruthenium alkylidenes, is described. Varying L- and X-type ligands on ruthenium alkylidenes permits selective access to either (E)-vinylsilanes or ß-alkylsilanes with high regio- and stereocontrol. cis,cis-1,5-Cyclooctadiene was identified as the most effective sacrificial hydrogen acceptor for the dehydrogenative silylation of vinylarenes, which allows use of a nearly equimolar ratio of alkenes and silanes.

14.
J Am Chem Soc ; 138(25): 7982-91, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27265033

RESUMO

A new, highly selective, bond functionalization strategy, achieved via relay of two transition metal catalysts and the use of traceless acetal directing groups, has been employed to provide facile formation of C-Si bonds and concomitant functionalization of a silicon group in a single vessel. Specifically, this approach involves the relay of Ir-catalyzed hydrosilylation of inexpensive and readily available phenyl acetates, exploiting disubstituted silyl synthons to afford silyl acetals and Rh-catalyzed ortho-C-H silylation to provide dioxasilines. A subsequent nucleophilic addition to silicon removes the acetal directing groups and directly provides unmasked phenol products and, thus, useful functional groups at silicon achieved in a single vessel. This traceless acetal directing group strategy for catalytic ortho-C-H silylation of phenols was also successfully applied to preparation of multisubstituted arenes. Remarkably, a new formal α-chloroacetyl directing group has been developed that allows catalytic reductive C-H silylation of sterically hindered phenols. In particular, this new method permits access to highly versatile and nicely differentiated 1,2,3-trisubstituted arenes that are difficult to access by other catalytic routes. In addition, the resulting dioxasilines can serve as chromatographically stable halosilane equivalents, which allow not only removal of acetal directing groups but also introduce useful functional groups leading to silicon-bridged biaryls. We demonstrated that this catalytic C-H bond silylation strategy has powerful synthetic potential by creating direct applications of dioxasilines to other important transformations, examples of which include aryne chemistry, Au-catalyzed direct arylation, sequential orthogonal cross-couplings, and late-stage silylation of phenolic bioactive molecules and BINOL scaffolds.


Assuntos
Fenol/química , Silanos/química , Acetais/química , Acetatos , Carbono/química , Catálise , Química Orgânica/métodos , Estradiol/química , Estrona/química , Ouro/química , Hidrogênio/química , Espectroscopia de Ressonância Magnética , Oxigênio/química , Paládio/química , Fenóis/química , Silício/química , Elementos de Transição/química
15.
Org Lett ; 17(23): 5792-5, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26566189

RESUMO

A Lewis base promoted deprotonative pronucleophile addition to silyl acetals has been developed and applied to the iridium-catalyzed reductive Horner-Wadsworth-Emmons (HWE) olefination of esters and the chemoselective reduction of the resulting enoates. Lewis base activation of silyl acetals generates putative pentacoordinate silicate acetals, which fragment into aldehydes, silanes, and alkoxides in situ. Subsequent deprotonative metalation of phosphonate esters followed by HWE with aldehydes furnishes enoates. This operationally convenient, mechanistically unique protocol converts the traditionally challenging aryl, alkenyl, and alkynyl esters to homologated enoates at room temperature within a single vessel.

16.
J Org Chem ; 80(9): 4661-71, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25853682

RESUMO

We report a modular approach to catalytic reductive Csp2-H and Csp3-H silylation of carboxylic acid derivatives encompassing esters, ketones, and aldehydes. Choice of either an Ir(I)/Rh(I) or Rh(I)/Rh(I) sequence leads to either exhaustive reductive ester or reductive ketone/aldehyde silylation, respectively. Notably, a catalyst-controlled direct formation of doubly reduced silyl ethers is presented, specifically via Ir-catalyzed exhaustive hydrosilylation. The resulting silyl ethers undergo Csp2-H and benzylic Csp3-H silylation in a single vessel.

17.
Chem Commun (Camb) ; 51(18): 3778-81, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25646601

RESUMO

This work describes the design and application of a single-pot, reductive arene C-H silanolization of aromatic esters for synthesis of ortho-formyl arylsilanols. This strategy involves a sequence of two transition metal (Ir and Rh)-catalyzed reactions for reductive arene ortho-silylation directed by hydridosilyl acetals and hydrolysis.


Assuntos
Acetais/química , Silanos/química , Catálise , Ésteres , Hidrólise , Irídio/química , Oxirredução , Ródio/química
18.
Org Lett ; 15(13): 3412-5, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23773003

RESUMO

Ligand-controlled, norbornene-mediated, regio- and diastereoselective rhodium-catalyzed intramolecular alkene hydrosilylation of homoallyl silyl ethers (1) exploiting either BINAP or 1,6-bis(diphenylphosphino)hexane (dpph) has been developed. This method permits selective access to either trans-oxasilacyclopentanes (trans-2) or oxasilacyclohexanes (3) at will. A substoichiometric amount of norbornene markedly increased both yield and selectivity. A norbornene-mediated hydride shuttle process is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA