Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(1): 704-711, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38148320

RESUMO

Large areas and simple processing methods are necessary for the commercialization of organic photovoltaics (OPVs). However, the efficiency drop due to the variation in thickness of OPVs limits their large-scale applications. Regioregular polymers with good crystallinity and packing properties that exhibit high charge mobility and extraction ability can help overcome these limitations. In this study, a regioregular polymer named PDBD-2FBT was synthesized. The crystallinity and packing properties of PDBD-2FBT were enhanced by a simple thermal treatment. Using PDBD-2FBT material as a donor and Y6-HU as an acceptor, we fabricated binary blend OPV devices. The devices with optimized active layer thickness achieved a power conversion efficiency (PCE) of 14.14%. A PCE of 13.18% was maintained even in thick-film conditions (400 nm), and thickness tolerance was observed. Based on the thickness tolerance, a 5-line module measuring 36 cm2 was fabricated via the bar-coating method, and a PCE of approximately 10% was achieved.

2.
ACS Sens ; 8(8): 3004-3013, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37487692

RESUMO

Commercial hydrogen (H2) sensors operate at high temperatures, which increases power consumption and poses a safety risk owing to the flammable nature of H2. Here, a polymer-noble metal-metal oxide film is fabricated using the spin-coating and printing methods to realize a highly sensitive, low-voltage operation, wide-operating-concentration, and near-monoselective H2 sensor at room temperature. The H2 sensors with an optimized thickness of Pd nanoparticles and SnO2 showed an extremely high response of 16,623 with a response time of 6 s and a recovery time of 5 s at room temperature and 2% H2. At the same time, printed flexible sensors demonstrate excellent sensitivity, with a response of 2300 at 2% H2. The excellent sensing performance at room temperature is due to the optimal SnO2 thickness, corresponding to the Debye length and the oxygen and H2 spillover caused by the optimized coverage of the Pd catalyst. Furthermore, multistructures of WO3 and SnO2 films are used to fabricate a new type of dual-signal sensor, which demonstrated simultaneous conductance and transmittance, i.e., color change. This work provides an effective strategy to develop robust, flexible, transparent, and long-lasting H2 sensors through large-area printing processes based on polymer-metal-metal oxide nanostructures.


Assuntos
Colorimetria , Hidrogênio , Temperatura , Óxidos , Polímeros
3.
Polymers (Basel) ; 14(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36501724

RESUMO

In this paper, we present dual responsive one-dimensional (1D) photonic crystal (PC) multilayer films that utilize a high-humidity environment and temperature. Dual responsive 1D PC multilayer films are fabricated on precoated thermochromic film by sequential alternate layer deposition of photo-crosslinkable poly(2-vinylnaphthalene-co-benzophenone acrylate) (P(2VN-co-BPA)) as a high refractive index polymer, and poly(4-vinylpyrollidone-co-benzophenone acrylate) P(4VP-co-BPA) as a low refractive index polymer. The thermochromic film shows a vivid color transition from black to white at 28 °C. Three different colors of thermochromic 1D PC multilayer films are prepared by thickness modulation of P(4VP-co-BPA) layers, and the films on a black background exhibit visible spectrum color only in a high-humidity environment (over 90% relative humidity (RH)). For the three films placed on a hands display, three different composite colors are synthesized by the reflection of light, including yellow, magenta, and cyan, due to the changing of backgrounds from black to white with temperature. Additionally, the films show remarkable color transitions with reliable reversibility. The films can be applied as anti-counterfeiting labels and can be used for smart decoration films. To the best of our knowledge, this is the first report of dual response colorimetric films that change color in various ways depending on temperature and humidity changes, and we believe that it can be applied to various applications.

4.
Polymers (Basel) ; 14(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36235911

RESUMO

To improve the peel strength and holding time of polypropylene glycol (PPG)-based pressure-sensitive adhesives (PSAs), a semi-interpenetrating polymer network (semi-IPN) was prepared using acrylic polymers. In addition, to prevent air pollution due to volatile organic compound emissions and avoid the degradation of physical properties due to a residual solvent, the PPG-based semi-IPN PSAs were fabricated by an eco-friendly solvent-free method using an acrylic monomer instead of an organic solvent. PPG-based semi-IPN PSAs with different hard segment contents (2.9-17.2%) were synthesized; their holding time was found to depend on the hard segment contents. The peel strength was improved because of the formation of the semi-IPN structure. Moreover, the high degree of hard domain formation in the semi-IPN PSA, derived from the increase in the hard segment content using a chain extender, resulted in a holding time improvement. We believe that the as-prepared PSAs can be used in various applications that require high creep resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...