Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Mol Med ; 56(4): 1001-1012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622198

RESUMO

Sterol regulatory element-binding protein (SREBP)-1c is involved in cellular lipid homeostasis and cholesterol biosynthesis and is highly increased in nonalcoholic steatohepatitis (NASH). However, the molecular mechanism by which SREBP-1c regulates hepatic stellate cells (HSCs) activation in NASH animal models and patients have not been fully elucidated. In this study, we examined the role of SREBP-1c in NASH and the regulation of LCN2 gene expression. Wild-type and SREBP-1c knockout (1cKO) mice were fed a high-fat/high-sucrose diet, treated with carbon tetrachloride (CCl4), and subjected to lipocalin-2 (LCN2) overexpression. The role of LCN2 in NASH progression was assessed using mouse primary hepatocytes, Kupffer cells, and HSCs. LCN2 expression was examined in samples from normal patients and those with NASH. LCN2 gene expression and secretion increased in CCl4-induced liver fibrosis mice model, and SREBP-1c regulated LCN2 gene transcription. Moreover, treatment with holo-LCN2 stimulated intracellular iron accumulation and fibrosis-related gene expression in mouse primary HSCs, but these effects were not observed in 1cKO HSCs, indicating that SREBP-1c-induced LCN2 expression and secretion could stimulate HSCs activation through iron accumulation. Furthermore, LCN2 expression was strongly correlated with inflammation and fibrosis in patients with NASH. Our findings indicate that SREBP-1c regulates Lcn2 gene expression, contributing to diet-induced NASH. Reduced Lcn2 expression in 1cKO mice protects against NASH development. Therefore, the activation of Lcn2 by SREBP-1c establishes a new connection between iron and lipid metabolism, affecting inflammation and HSCs activation. These findings may lead to new therapeutic strategies for NASH.


Assuntos
Ferro , Lipocalina-2 , Cirrose Hepática , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Humanos , Masculino , Camundongos , Tetracloreto de Carbono/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Ferro/metabolismo , Lipocalina-2/metabolismo , Lipocalina-2/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/genética , Cirrose Hepática/induzido quimicamente , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
2.
Antioxid Redox Signal ; 40(1-3): 122-144, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37917113

RESUMO

Significance: Hydrogen sulfide (H2S) is a recently recognized gasotransmitter involved in physiological and pathological conditions in mammals. It protects organs from oxidative stress, inflammation, hypertension, and cell death. With abundant expression of H2S-production enzymes, the liver is closely linked to H2S signaling. Recent Advances: Hepatic H2S comes from various sources, including gut microbiota, exogenous sulfur salts, and endogenous production. Recent studies highlight the importance of hepatic H2S in liver diseases such as nonalcoholic fatty liver disease (NAFLD), liver injury, and cancer, particularly at advanced stages. Endogenous H2S production deficiency is associated with severe liver disease, while exogenous H2S donors protect against liver dysfunction. Critical Issues: However, the roles of H2S in NAFLD, liver injury, and liver cancer are still debated, and its effects depend on donor type, dosage, treatment duration, and cell type, suggesting a multifaceted role. This review aimed to critically evaluate H2S production, metabolism, mode of action, and roles in liver function and disease. Future Direction: Understanding H2S's precise roles and mechanisms in liver health will advance potential therapeutic applications in preclinical and clinical research. Targeting H2S-producing enzymes and exogenous H2S sources, alone or in combination with other drugs, could be explored. Quantifying endogenous H2S levels may aid in diagnosing and managing liver diseases. Antioxid. Redox Signal. 40, 122-144.


Assuntos
Sulfeto de Hidrogênio , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Sulfeto de Hidrogênio/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Inflamação/tratamento farmacológico , Mamíferos/metabolismo
3.
J Adv Res ; 45: 1-13, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659922

RESUMO

INTRODUCTION: Sterol regulatory element binding protein (SREBP) cleavage-associating protein (SCAP) is a sterol-regulated escort protein that translocates SREBPs from the endoplasmic reticulum to the Golgi apparatus, thereby activating lipid metabolism and cholesterol synthesis. Although SCAP regulates lipid metabolism in metabolic tissues, such as the liver and muscle, the effect of macrophage-specific SCAP deficiency in adipose tissue macrophages (ATMs) of patients with metabolic diseases is not completely understood. OBJECTIVES: Here, we examined the function of SCAP in high-fat/high-sucrose diet (HFHS)-fed mice and investigated its role in the polarization of classical activated macrophages in adipose tissue. METHODS: Macrophage-specific SCAP knockout (mKO) mice were generated through crossbreeding lysozyme 2-cre mice with SCAP floxed mice which were then fed HFHS for 12 weeks. Primary macrophages were derived from bone marrow cells and analyzed further. RESULTS: We found that fat accumulation and the appearance of proinflammatory M1 macrophages were both higher in HFHS-fed SCAP mKO mice relative to floxed control mice. We traced the effect to a defect in the lipopolysaccharide-mediated increase in SREBP-1a that occurs in control but not SCAP mKO mice. Mechanistically, SREBP-1a increased expression of cholesterol 25-hydroxylase transcription, resulting in an increase in the production of 25-hydroxycholesterol (25-HC), an endogenous agonist of liver X receptor alpha (LXRα) which increased expression of cholesterol efflux to limit cholesterol accumulation and M1 polarization. In the absence of SCAP mediated activation of SREBP-1a, increased M1 macrophage polarization resulted in reduced cholesterol efflux downstream from 25-HC-dependent LXRα activation. CONCLUSION: Overall, the activation of the SCAP-SREBP-1a pathway in macrophages may provide a novel therapeutic strategy that ameliorates obesity by controlling cholesterol homeostasis in ATMs.


Assuntos
Resistência à Insulina , Camundongos , Animais , Proteína de Ligação a Elemento Regulador de Esterol 1 , Peptídeos e Proteínas de Sinalização Intracelular , Colesterol , Obesidade
4.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499416

RESUMO

SMILE (small heterodimer partner-interacting leucine zipper protein) is a transcriptional corepressor that potently regulates various cellular processes such as metabolism and growth in numerous tissues. However, its regulatory role in skin tissue remains uncharacterized. Here, we demonstrated that SMILE expression markedly decreased in human melanoma biopsy specimens and was inversely correlated with that of microphthalmia-associated transcription factor (MITF). During melanogenesis, α-melanocyte-stimulating hormone (α-MSH) induction of MITF was mediated by a decrease in SMILE expression in B16F10 mouse melanoma cells. Mechanistically, SMILE was regulated by α-MSH/cAMP/protein kinase A signaling and suppressed MITF promoter activity via corepressing transcriptional activity of the cAMP response element-binding protein. Moreover, SMILE overexpression significantly reduced α-MSH-induced MITF and melanogenic genes, thereby inhibiting melanin production in melanocytes. Conversely, SMILE inhibition increased the transcription of melanogenic genes and melanin contents. These results indicate that SMILE is a downstream effector of cAMP-mediated signaling and is a critical factor in the regulation of melanogenic transcription; in addition, they suggest a potential role of SMILE as a corepressor in skin pigmentation.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Melanoma , Fator de Transcrição Associado à Microftalmia , Animais , Humanos , Camundongos , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Melaninas/metabolismo , Melanócitos/metabolismo , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética
5.
Signal Transduct Target Ther ; 7(1): 367, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253361

RESUMO

The biosynthesis of host lipids and/or lipid droplets (LDs) has been studied extensively as a putative therapeutic target in diverse viral infections. However, directly targeting the LD lipolytic catabolism in virus-infected cells has not been widely investigated. Here, we show the linkage of the LD-associated lipase activation to the breakdown of LDs for the generation of free fatty acids (FFAs) at the late stage of diverse RNA viral infections, which represents a broad-spectrum antiviral target. Dysfunction of membrane transporter systems due to virus-induced cell injury results in intracellular malnutrition at the late stage of infection, thereby making the virus more dependent on the FFAs generated from LD storage for viral morphogenesis and as a source of energy. The replication of SARS-CoV-2 and influenza A virus (IAV), which is suppressed by the treatment with LD-associated lipases inhibitors, is rescued by supplementation with FFAs. The administration of lipase inhibitors, either individually or in a combination with virus-targeting drugs, protects mice from lethal IAV infection and mitigates severe lung lesions in SARS-CoV-2-infected hamsters. Moreover, the lipase inhibitors significantly reduce proinflammatory cytokine levels in the lungs of SARS-CoV-2- and IAV-challenged animals, a cause of a cytokine storm important for the critical infection or mortality of COVID-19 and IAV patients. In conclusion, the results reveal that lipase-mediated intracellular LD lipolysis is commonly exploited to facilitate RNA virus replication and furthermore suggest that pharmacological inhibitors of LD-associated lipases could be used to curb current COVID-19- and future pandemic outbreaks of potentially troublesome RNA virus infection in humans.


Assuntos
Tratamento Farmacológico da COVID-19 , Lipólise , Infecções por Orthomyxoviridae , Animais , Humanos , Camundongos , Antivirais/farmacologia , Citocinas , Ácidos Graxos não Esterificados , Vírus da Influenza A , Lipase , Proteínas de Membrana Transportadoras , RNA , SARS-CoV-2 , Infecções por Orthomyxoviridae/tratamento farmacológico
6.
Autophagy ; 17(12): 4489-4490, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34455909

RESUMO

Nonalcoholic fatty liver disease (NAFLD) affects a quarter of the global population. However, its pathogenesis is not completely understood. In our recent study, we have demonstrated that in a high-fat diet-induced liver steatosis model, the activation of SREBF1/SREBP-1c (sterol regulatory element binding transcription factor 1) directly upregulates Mir216a transcription, which inhibits CTH/CSE (cystathionase (cystathionine gamma-lyase)) expression and its function in hydrogen sulfide (H2S) production. Reduced H2S production suppresses the sulfhydration of ULK1 (unc-51 like autophagy activating kinase 1), consequently inhibiting autophagic flux and lipid droplet turnover. A single substitution mutation (C951S) in ULK1 or the silencing of CTH impairs ULK1 sulfhydration-mediated lipophagy, thereby promoting hepatic steatosis in mice. Interestingly, the sulfhydration of ULK1 increases its intrinsic kinase activity to modulate autophagy at both initiation and progression stages of autophagic catabolic flux. This study reveals that SREBF1/SREBP-1c contributes to hepatic lipid accumulation through its combined effect of increased lipid synthesis coupled with decreased lipid degradation mediated by autophagic dysregulation.


Assuntos
Autofagia , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica , Fígado/metabolismo , Camundongos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/farmacologia
7.
Int J Mol Sci ; 22(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198910

RESUMO

Changes in structural and functional neuroplasticity have been implicated in various neurological disorders. Sterol regulatory element-binding protein (SREBP)-1c is a critical regulatory molecule of lipid homeostasis in the brain. Recently, our findings have shown the potential involvement of SREBP-1c deficiency in the alteration of novel modulatory molecules in the hippocampus and occurrence of schizophrenia-like behaviors in mice. However, the possible underlying mechanisms, related to neuronal plasticity in the hippocampus, are yet to be elucidated. In this study, we investigated the hippocampus-dependent memory function and neuronal architecture of hippocampal neurons in SREBP-1c knockout (KO) mice. During the passive avoidance test, SREBP-1c KO mice showed memory impairment. Based on Golgi staining, the dendritic complexity, length, and branch points were significantly decreased in the apical cornu ammonis (CA) 1, CA3, and dentate gyrus (DG) subregions of the hippocampi of SREBP-1c KO mice, compared with those of wild-type (WT) mice. Additionally, significant decreases in the dendritic diameters were detected in the CA3 and DG subregions, and spine density was also significantly decreased in the apical CA3 subregion of the hippocampi of KO mice, compared with that of WT mice. Alterations in the proportions of stubby and thin-shaped dendritic spines were observed in the apical subcompartments of CA1 and CA3 in the hippocampi of KO mice. Furthermore, the corresponding differential decreases in the levels of SREBP-1 expression in the hippocampal subregions (particularly, a significant decrease in the level in the CA3) were detected by immunofluorescence. This study suggests that the contributions of SREBP-1c to the structural plasticity of the mouse hippocampus may have underlain the behavioral alterations. These findings offer insights into the critical role of SREBP-1c in hippocampal functioning in mice.


Assuntos
Espinhas Dendríticas/genética , Memória/fisiologia , Neurônios/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Espinhas Dendríticas/patologia , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Camundongos Knockout , Plasticidade Neuronal/genética , Neurônios/patologia , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência
8.
Mol Cell ; 81(18): 3820-3832.e7, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34233158

RESUMO

A metabolic imbalance between lipid synthesis and degradation can lead to hepatic lipid accumulation, a characteristic of patients with non-alcoholic fatty liver disease (NAFLD). Here, we report that high-fat-diet-induced sterol regulatory element-binding protein (SREBP)-1c, a key transcription factor that regulates lipid biosynthesis, impairs autophagic lipid catabolism via altered H2S signaling. SREBP-1c reduced cystathionine gamma-lyase (CSE) via miR-216a, which in turn decreased hepatic H2S levels and sulfhydration-dependent activation of Unc-51-like autophagy-activating kinase 1 (ULK1). Furthermore, Cys951Ser mutation of ULK1 decreased autolysosome formation and promoted hepatic lipid accumulation in mice, suggesting that the loss of ULK1 sulfhydration was directly associated with the pathogenesis of NAFLD. Moreover, silencing of CSE in SREBP-1c knockout mice increased liver triglycerides, confirming the connection between CSE, autophagy, and SREBP-1c. Overall, our results uncover a 2-fold mechanism for SREBP-1c-driven hepatic lipid accumulation through reciprocal activation and inhibition of hepatic lipid biosynthesis and degradation, respectively.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Fígado Gorduroso/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/fisiologia , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/fisiopatologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Lipogênese , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/fisiologia , Triglicerídeos/metabolismo
9.
Exp Mol Med ; 53(4): 548-559, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33879861

RESUMO

The autophagy-lysosomal degradation system has an important role in maintaining liver homeostasis by removing unnecessary intracellular components. Impaired autophagy has been linked to nonalcoholic fatty liver disease (NAFLD), which includes hepatitis, steatosis, fibrosis, and cirrhosis. Thus, gaining an understanding of the mechanisms that regulate autophagy and how autophagy contributes to the development and progression of NAFLD has become the focus of recent studies. Autophagy regulation has been thought to be primarily regulated by cytoplasmic processes; however, recent studies have shown that microRNAs (miRNAs) and transcription factors (TFs) also act as key regulators of autophagy by targeting autophagy-related genes. In this review, we summarize the miRNAs and TFs that regulate the autophagy pathway in NAFLD. We further focus on the transcriptional and posttranscriptional regulation of autophagy and discuss the complex regulatory networks involving these regulators in autophagy. Finally, we highlight the potential of targeting miRNAs and TFs involved in the regulation of autophagy for the treatment of NAFLD.


Assuntos
Autofagia , Regulação da Expressão Gênica , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Biomarcadores , Suscetibilidade a Doenças , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Interferência de RNA
10.
Autophagy ; 17(9): 2415-2431, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33078654

RESUMO

Macroautophagy/autophagy, a self-degradative process, regulates metabolic homeostasis in response to various stress conditions and is a therapeutic target for nonalcoholic fatty liver disease. We found that autophagic activity was inhibited as a result of a significant reduction in the expression of autophagy-related genes such as Ulk1 in a mouse model and patients with fatty liver. This downregulation was caused by increased Mir214-3p levels and decreased Hnf4a/Hnf4α mRNA levels in hepatocytes. Mir214-3p suppressed Ulk1 expression through direct binding at a 3' untranslated region sequence. Hnf4a directly activated transcription of Ulk1. We investigated lipid accumulation and the expression of autophagy-related genes in the livers of mice treated with anti-Mir214-3p. Hepatic steatosis was alleviated, and Ulk1 mRNA levels were significantly increased by locked nucleic acid-mediated Mir214-3p silencing. Additionally, autophagosome formation and MAP1LC3/LC3-II protein levels were increased, indicating an increase in autophagic activity. Interestingly, suppression of Mir214-3p did not ameliorate fatty liver under Ulk1 suppression, suggesting that reduced Mir214-3p levels mitigate hepatic steatosis through upregulation of Ulk1. These results demonstrate that inhibition of Mir214-3p expression ameliorated fatty liver disease through increased autophagic activity by increasing the expression of Ulk1. Thus, Mir214-3p is a potential therapeutic target for nonalcoholic fatty disease.Abbreviations: AMPK: adenosine monophosphate-activated protein kinase; ATG: autophagy-related; ChIP: chromatin immunoprecipitation; CTSB: cathepsin B; CTSL: cathepsin L; CQ: chloroquine; HFD: high-fat diet; HNF4A: hepatocyte nuclear factor 4, alpha; IF: immunofluorescence; IHC: immunohistochemistry; LDs: lipid droplets; Leup: leupeptin; LFD: low-fat diet; LNA: locked nucleic acid; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; miRNA: microRNA; MTOR: mechanistic target of rapamycin kinase; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; PCR: polymerase chain reaction; TEM: transmission electron microscopy; TF: transcription factor; TLDA: TaqMan low-density array; ULK1: unc-51 like kinase 1; UTR: untranslated region.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Fator 4 Nuclear de Hepatócito , Peptídeos e Proteínas de Sinalização Intracelular , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Dieta Hiperlipídica , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/genética
11.
Pharmaceuticals (Basel) ; 13(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202739

RESUMO

We previously reported that 3-pentylcatechol (PC), a synthetic non-allergenic urushiol derivative, inhibited the growth of Helicobacter pylori in an in vitro assay using nutrient agar and broth. In this study, we aimed to investigate the in vivo antimicrobial activity of PC against H. pylori growing in the stomach mucous membrane. Four-week-old male C57BL/6 mice (n = 4) were orally inoculated with H. pylori Sydney Strain-1 (SS-1) for 8 weeks. Thereafter, the mice received PC (1, 5, and 15 mg/kg) and triple therapy (omeprazole, 0.7 mg/kg; metronidazole, 16.7 mg/kg; clarithromycin, 16.7 mg/kg, reference groups) once daily for 10 days. Infiltration of inflammatory cells in gastric tissue was greater in the H. pylori-infected group compared with the control group and lower in both the triple therapy- and PC-treated groups. In addition, upregulation of cytokine mRNA was reversed after infection, upon administration of triple therapy and PC. Interestingly, PC was more effective than triple therapy at all doses, even at 1/15th the dose of triple therapy. In addition, PC demonstrated synergism with triple therapy, even at low concentrations. The results suggest that PC may be more effective against H. pylori than established antibiotics.

12.
Int J Mol Sci ; 21(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531902

RESUMO

Lipid homeostasis is an important component of brain function, and its disturbance causes several neurological disorders, such as Huntington's, Alzheimer's, and Parkinson's diseases as well as mood disorders. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key modulatory molecule involved in lipid homeostasis in the central nervous system. However, little is known about the biological effects of SREBP-1c in the brain. Our previous study uncovered that mice deficient in SREBP-1c exhibit schizophrenia-like behaviors. To investigate whether there are novel molecular mechanisms involved in the neurological aberrations caused by SREBP-1c deficiency, we analyzed the transcriptomes of the hippocampus of SREBP-1c knockout (KO) mice and wild-type mice. We found seven differentially expressed genes (three up-regulated and four down-regulated genes) in the hippocampus of SREBP-1c KO mice. For further verification, we selected the three most significantly changed genes: glucagon-like peptide 2 receptors (GLP2R) involved in hippocampal neurogenesis and neuroplasticity as well as in cognitive impairments; necdin (NDN) which is related to neuronal death and neurodevelopmental disorders; and Erb-B2 receptor tyrosine kinase 4 (ERBB4) which is a receptor for schizophrenia-linked protein, neuregulin-1. The protein levels of GLP2R and NDN were considerably decreased, but the level of ERBB4 was significantly increased in the hippocampus of SREBP-1c KO mice. However, further confirmation is warranted to establish the translatability of these findings from this rodent model into human patients. We suggest that these data provide novel molecular evidence for the modulatory role of SREBP-1c in the mouse hippocampus.


Assuntos
Comportamento Animal/fisiologia , Hipocampo/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Diferenciação Celular/genética , Sobrevivência Celular/genética , Perfilação da Expressão Gênica , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mapas de Interação de Proteínas/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Esquizofrenia/genética , Transdução de Sinais/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
13.
Molecules ; 25(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235537

RESUMO

Hepatocellular carcinoma (HCC) accounts for approximately 90% of all cases of primary liver cancer; it is the third most frequent cause of cancer-related death worldwide. In early-stage disease, surgical resection and liver transplantation are considered curative treatments. However, the majority of HCC patients present with advanced-stage disease that is treated using palliative systemic therapy. Since HCC is heterogeneous owing to its multiple etiologies, various risk factors, and inherent resistance to chemotherapy, the development of an effective systemic treatment strategy for HCC remains a considerable challenge. Autophagy is a lysosome-dependent catabolic degradation pathway that is essential for maintaining cellular energy homeostasis. Autophagy dysfunction is closely linked with the pathogenesis of various cancers; therefore, the discovery of small molecules that can modulate autophagy has attracted considerable interest in the development of a systemic treatment strategy for advanced HCC. Here, we reviewed the roles of autophagy in HCC and the recent advances regarding small molecules that target autophagy regulatory mechanisms.


Assuntos
Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Lisossomos , Transdução de Sinais/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Lisossomos/metabolismo , Lisossomos/patologia
14.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(12): 158521, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31479733

RESUMO

Although SREBP-1c regulates key enzymes required for hepatic de novo lipogenesis, the mechanisms underlying transcriptional regulation of SREBP-1c in pathogenesis of alcoholic fatty liver is still incompletely understood. In this study, we investigated the role of ERRγ in alcohol-mediated hepatic lipogenesis and examined the possibility to ameliorate alcoholic fatty liver through its inverse agonist. Hepatic ERRγ and SREBP-1c expression was increased by alcohol-mediated activation of CB1 receptor signaling. Deletion and mutation analyses of the Srebp-1c gene promoter showed that ERRγ directly regulates Srebp-1c gene transcription via binding to an ERR-response element. Overexpression of ERRγ significantly induced SREBP-1c expression and fat accumulation in liver of mice, which were blocked in Srebp-1c-knockout hepatocytes. Conversely, liver-specific ablation of ERRγ gene expression attenuated alcohol-mediated induction of SREBP-1c expression. Finally, an ERRγ inverse agonist, GSK5182, significantly ameliorates fatty liver disease in chronically alcohol-fed mice through inhibition of SREBP-1c-mediated fat accumulation. ERRγ mediates alcohol-induced hepatic lipogenesis by upregulating SREBP-1c expression, which can be blunted by the inverse agonist for ERRγ, which may be an attractive therapeutic strategy for the treatment of alcoholic fatty liver disease in human.


Assuntos
Fígado Gorduroso Alcoólico/genética , Receptores de Estrogênio/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Ativação Transcricional , Animais , Células Cultivadas , Fígado Gorduroso Alcoólico/patologia , Células Hep G2 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Receptores de Estrogênio/análise , Proteína de Ligação a Elemento Regulador de Esterol 1/análise , Regulação para Cima
15.
Mol Nutr Food Res ; 63(14): e1801347, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31034714

RESUMO

SCOPE: Obesity and diabetes are major public health problems and are emerging as pandemics. Considerable evidence suggests that pear fruit consumption is associated with a lower risk of obesity-related complications. Thus, the present study is conducted to investigate the therapeutic potential of pear extract (PE) for reversing obesity and associated metabolic complications in high-fat diet-induced obese mice. METHODS AND RESULTS: Obesity is induced in male C57BL/6 mice fed a high-fat diet for 11 weeks. After the first 6 weeks on the diet, obese mice are administered vehicle or PE for 5 weeks. PE treatment decreases body weight gain, expands white adipose tissue (WAT), and causes hepatic steatosis in obese mice, as well as inhibits adipogenesis and lipogenesis. Impaired glucose tolerance and insulin resistance are improved by PE. In addition, PE reduces macrophage infiltration and expression of pro-inflammatory genes and deactivates mitogen-activated protein kinases in WAT. Finally, malaxinic acid is identified as an active component responsible for the anti-obesity effects of PE in mice. CONCLUSION: The results demonstrate that PE supplementation ameliorates diet-induced obesity and associated metabolic complications and suggest the health-beneficial effects of both pear fruits and malaxinic acid in counteracting these diseases.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Benzoatos/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/dietoterapia , Paniculite/dietoterapia , Extratos Vegetais/farmacologia , Piranos/uso terapêutico , Pyrus/química , Adipogenia/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/patologia , Animais , Fármacos Antiobesidade/farmacologia , Benzoatos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/etiologia , Paniculite/etiologia , Paniculite/patologia , Extratos Vegetais/análise , Polifenóis/análise , Piranos/farmacologia , Aumento de Peso/efeitos dos fármacos
16.
Genes Brain Behav ; 18(4): e12540, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30430717

RESUMO

Schizophrenia is a hereditary disease that approximately 1% of the worldwide population develops. Many studies have investigated possible underlying genes related to schizophrenia. Recently, clinical studies suggested sterol regulatory element-binding protein (SREBP) as a susceptibility gene in patients with schizophrenia. SREBP controls cellular lipid homeostasis by three isoforms: SREBP-1a, SREBP-1c and SREBP-2. This study used SREBP-1c knockout (KO) mice to examine whether a deficiency in SREBP-1c would affect their emotional and psychiatric behaviors. Altered mRNA expression in genes downstream from SREBP-1c was confirmed in the brains of SREBP-1c KO mice. Schizophrenia-like behavior, including hyperactivity during the dark phase, depressive-like behavior, aggressive behavior and deficits in social interaction and prepulse inhibition, was observed in SREBP-1c KO mice. Furthermore, increased volume of the lateral ventricle was detected in SREBP-1c KO mice. The mRNA levels of several γ-aminobutyric acid (GABA)-receptor subtypes and/or glutamic acid decarboxylase 65/67 decreased in the hippocampus and medial prefrontal cortex of SREBP-1c KO mice. Thus, SREBP-1c deficiency may contribute to enlargement of the lateral ventricle and development of schizophrenia-like behaviors and be associated with altered GABAergic transmission.


Assuntos
Esquizofrenia/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Hipocampo/metabolismo , Ventrículos Laterais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência
17.
Mol Cells ; 41(5): 454-464, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29754475

RESUMO

Crosstalk between G-protein signaling and glutamatergic transmission within the brain reward circuits is critical for long-term emotional effects (depression and anxiety), cravings, and negative withdrawal symptoms associated with opioid addiction. A previous study showed that Regulator of G-protein signaling 4 (RGS4) may be implicated in opiate action in the nucleus accumbens (NAc). However, the mechanism of the NAc-specific RGS4 actions that induce the behavioral responses to opiates remains largely unknown. The present study used a short hairpin RNA (shRNA)-mediated knock-down of RGS4 in the NAc of the mouse brain to investigate the relationship between the activation of ionotropic glutamate receptors and RGS4 in the NAc during morphine reward. Additionally, the shRNA-mediated RGS4 knock-down was implemented in NAc/striatal primary-cultured neurons to investigate the role that striatal neurons have in the morphine-induced activation of ionotropic glutamate receptors. The results of this study show that the NAc-specific knockdown of RGS4 significantly increased the behaviors associated with morphine and did so by phosphorylation of the GluR1 (Ser831) and NR2A (Tyr1325) glutamate receptors in the NAc. Furthermore, the knock-down of RGS4 enhanced the phosphorylation of the GluR1 and NR2A glutamate receptors in the primary NAc/striatal neurons during spontaneous morphine withdrawal. These findings show a novel molecular mechanism of RGS4 in glutamatergic transmission that underlies the negative symptoms associated with morphine administration.


Assuntos
Ácido Glutâmico/fisiologia , Morfina/farmacologia , Proteínas do Tecido Nervoso/fisiologia , Núcleo Accumbens/fisiologia , Proteínas RGS/fisiologia , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Recompensa , Animais , Células Cultivadas , Corpo Estriado/citologia , Comportamento Exploratório/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Núcleo Accumbens/citologia , Núcleo Accumbens/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas RGS/antagonistas & inibidores , Proteínas RGS/genética , Interferência de RNA , RNA Interferente Pequeno/genética
18.
Oncotarget ; 8(35): 58790-58800, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28938597

RESUMO

The natural, phenolic lipid urushiol exhibits both antioxidant and anticancer activities; however, its biological activity on hepatocellular carcinoma (HCC) has not been previously investigated. Here, we demonstrate that an urushiol derivative, 3-decylcatechol (DC), induces human HCC Huh7 cell death by induction of autophagy. DC initiates the autophagic process by activation of the mammalian target of rapamycin signaling pathway via Unc-51-like autophagy activating kinase 1, leading to autophagosome formation. The autophagy inhibitor, chloroquine, suppressed autolysosome formation and cell death induction by DC, indicating an autophagic cell death. Interestingly, DC also activated the endoplasmic reticulum (ER) stress response that promotes autophagy via p62 transcriptional activation involving the inositol-requiring enzyme 1α/c-Jun N-terminal kinase/c-jun pathway. We also show that cytosolic calcium mobilization is necessary for the ER stress response and autophagy induction by DC. These findings reveal a novel mechanism by which this urushiol derivative induces autophagic cell death in HCC.

19.
Int J Mol Sci ; 18(8)2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28825660

RESUMO

Despite the critical role of melanin in the protection of skin against UV radiation, excess production of melanin can lead to hyperpigmentation and skin cancer. Pear fruits are often used in traditional medicine for the treatment of melasma; therefore, we investigated the effects of pear extract (PE) and its component, protocatechuic acid (PCA), on melanogenesis in mouse melanoma cells. We found that PE and PCA significantly suppressed melanin content and cellular tyrosinase activity through a decrease in the expression of melanogenic enzymes and microphthalmia-associated transcription factor (Mitf) in α-melanocyte stimulating hormone-stimulated mouse melanoma cells. Moreover, PCA decreased cyclic adenosine monophosphate (cAMP) levels and cAMP-responsive element-binding protein phosphorylation, which downregulated Mitf promoter activation and subsequently mediated the inhibition of melanogenesis. These results suggested that pear may be an effective skin lightening agent that targets either a tyrosinase activity or a melanogenic pathway.


Assuntos
Hidroxibenzoatos/administração & dosagem , Melanoma Experimental/tratamento farmacológico , Melanoma/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Humanos , Hidroxibenzoatos/química , Melaninas/antagonistas & inibidores , Melaninas/biossíntese , Melanócitos/efeitos dos fármacos , Melanócitos/patologia , Melanoma/patologia , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Monofenol Mono-Oxigenase/antagonistas & inibidores , Fosforilação , Extratos Vegetais/química , Pyrus/química
20.
Biosci Biotechnol Biochem ; 81(7): 1409-1416, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28345482

RESUMO

A Glu-Phe (EF) was isolated from onion (Allium cepa L. cv. Sunpower). The chemical structure of EF was determined by nuclear magnetic resonance and electrospray ionization-mass (ESI-MS) spectroscopy. We showed that EF reduced lipid accumulation in mouse hepatocytes by inhibiting the expression of sterol regulatory element-binding protein-1c (SREBP-1c) and its lipogenic target genes. We also found that AMP-activated protein kinase (AMPK) was required for the inhibitory effect of EF on lipid accumulation in mouse hepatocytes. Furthermore, EF was qualified in nine onion cultivars by selective multiple reaction-monitoring detection of liquid chromatography-ESI-MS. These results suggest that EF could contribute to the beneficial effect of onion supplement in maintaining hepatic lipid homeostasis.


Assuntos
Dipeptídeos/farmacologia , Hepatócitos/efeitos dos fármacos , Hipolipemiantes/farmacologia , Lipogênese/efeitos dos fármacos , Cebolas/química , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dipeptídeos/isolamento & purificação , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Regulação da Expressão Gênica , Hepatócitos/citologia , Hepatócitos/metabolismo , Hipolipemiantes/isolamento & purificação , Lipogênese/genética , Camundongos , Extratos Vegetais/química , Transdução de Sinais , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...