Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069639

RESUMO

Polintons are double-stranded DNA, virus-like self-synthesizing transposons widely found in eukaryotic genomes. Recent metagenomic discoveries of Polinton-like viruses are consistent with the hypothesis that Polintons invade eukaryotic host genomes through infectious viral particles. Nematode genomes contain multiple copies of Polintons and provide an opportunity to explore the natural distribution and evolution of Polintons during this process. We performed an extensive search of Polintons across nematode genomes, identifying multiple full-length Polinton copies in several species. We provide evidence of both ancient Polinton integrations and recent mobility in strains of the same nematode species. In addition to the major nematode Polinton family, we identified a group of Polintons that are overall closely related to the major family but encode a distinct protein-primed DNA polymerase B (pPolB) that is related to homologs from a different group of Polintons present outside of the Nematoda. Phylogenetic analyses on the pPolBs support the evolutionary scenarios in which these extrinsic pPolBs that seem to derive from Polinton families present in oomycetes and molluscs replaced the canonical pPolB in subsets of Polintons found in terrestrial and marine nematodes, respectively, suggesting interphylum horizontal gene transfers. The pPolBs of the terrestrial nematode and oomycete Polintons share a unique feature, an insertion of an HNH nuclease domain, whereas the pPolBs in the marine nematode Polintons share an insertion of a VSR nuclease domain with marine mollusc pPolBs. We hypothesize that horizontal gene transfer occurs among Polintons from widely different but cohabiting hosts.


Assuntos
Nematoides , Vírus , Humanos , Animais , Filogenia , Elementos de DNA Transponíveis , DNA Polimerase Dirigida por DNA/genética , Vírus/genética , Nematoides/genética
2.
bioRxiv ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37662302

RESUMO

Polintons are dsDNA, virus-like self-synthesizing transposons widely found in eukaryotic genomes. Recent metagenomic discoveries of Polinton-like viruses are consistent with the hypothesis that Polintons invade eukaryotic host genomes through infectious viral particles. Nematode genomes contain multiple copies of Polintons and provide an opportunity to explore the natural distribution and evolution of Polintons during this process. We performed an extensive search of Polintons across nematode genomes, identifying multiple full-length Polinton copies in several species. We provide evidence of both ancient Polinton integrations and recent mobility in strains of the same nematode species. In addition to the major nematode Polinton family, we identified a group of Polintons that are overall closely related to the major family, but encode a distinct protein-primed B family DNA polymerase (pPolB) that is related to homologs from a different group of Polintons present outside of the Nematoda . Phylogenetic analyses on the pPolBs support the evolutionary scenarios in which these extrinsic pPolBs that seem to derive from Polinton families present in oomycetes and molluscs replaced the canonical pPolB in subsets of Polintons found in terrestrial and marine nematodes, respectively, suggesting inter-phylum horizontal gene transfers. The pPolBs of the terrestrial nematode and oomycete Polintons share a unique feature, an insertion of a HNH nuclease domain, whereas the pPolBs in the marine nematode Polintons share an insertion of a VSR nuclease domain with marine mollusc pPolBs. We hypothesize that horizontal gene transfer occurs among Polintons from widely different but cohabiting hosts.

3.
Nat Commun ; 14(1): 3716, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349299

RESUMO

Accumulating evidence indicates that mitochondria play crucial roles in immunity. However, the role of the mitochondrial Krebs cycle in immunity remains largely unknown, in particular at the organism level. Here we show that mitochondrial aconitase, ACO-2, a Krebs cycle enzyme that catalyzes the conversion of citrate to isocitrate, inhibits immunity against pathogenic bacteria in C. elegans. We find that the genetic inhibition of aco-2 decreases the level of oxaloacetate. This increases the mitochondrial unfolded protein response, subsequently upregulating the transcription factor ATFS-1, which contributes to enhanced immunity against pathogenic bacteria. We show that the genetic inhibition of mammalian ACO2 increases immunity against pathogenic bacteria by modulating the mitochondrial unfolded protein response and oxaloacetate levels in cultured cells. Because mitochondrial aconitase is highly conserved across phyla, a therapeutic strategy targeting ACO2 may eventually help properly control immunity in humans.


Assuntos
Aconitato Hidratase , Caenorhabditis elegans , Humanos , Animais , Aconitato Hidratase/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ácido Oxaloacético , Oxaloacetatos , Resposta a Proteínas não Dobradas , Mamíferos/metabolismo
4.
Nature ; 606(7915): 663-673, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35732761

RESUMO

Non-volatile magnetic random-access memories (MRAMs), such as spin-transfer torque MRAM and next-generation spin-orbit torque MRAM, are emerging as key to enabling low-power technologies, which are expected to spread over large markets from embedded memories to the Internet of Things. Concurrently, the development and performances of devices based on two-dimensional van der Waals heterostructures bring ultracompact multilayer compounds with unprecedented material-engineering capabilities. Here we provide an overview of the current developments and challenges in regard to MRAM, and then outline the opportunities that can arise by incorporating two-dimensional material technologies. We highlight the fundamental properties of atomically smooth interfaces, the reduced material intermixing, the crystal symmetries and the proximity effects as the key drivers for possible disruptive improvements for MRAM at advanced technology nodes.

5.
Sci Adv ; 7(49): eabj8156, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860542

RESUMO

The Golgi apparatus plays a central role in trafficking cargoes such as proteins and lipids. Defects in the Golgi apparatus lead to various diseases, but its role in organismal longevity is largely unknown. Using a quantitative proteomic approach, we found that a Golgi protein, MON-2, was up-regulated in long-lived Caenorhabditis elegans mutants with mitochondrial respiration defects and was required for their longevity. Similarly, we showed that DOP1/PAD-1, which acts with MON-2 to traffic macromolecules between the Golgi and endosome, contributed to the longevity of respiration mutants. Furthermore, we demonstrated that MON-2 was required for up-regulation of autophagy, a longevity-associated recycling process, by activating the Atg8 ortholog GABARAP/LGG-1 in C. elegans. Consistently, we showed that mammalian MON2 activated GABARAPL2 through physical interaction, which increased autophagic flux in mammalian cells. Thus, the evolutionarily conserved role of MON2 in trafficking between the Golgi and endosome is an integral part of autophagy-mediated longevity.

6.
J Cell Biol ; 220(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33666644

RESUMO

A hallmark of aging is immunosenescence, a decline in immune functions, which appeared to be inevitable in living organisms, including Caenorhabditis elegans. Here, we show that genetic inhibition of the DAF-2/insulin/IGF-1 receptor drastically enhances immunocompetence in old age in C. elegans. We demonstrate that longevity-promoting DAF-16/FOXO and heat-shock transcription factor 1 (HSF-1) increase immunocompetence in old daf-2(-) animals. In contrast, p38 mitogen-activated protein kinase 1 (PMK-1), a key determinant of immunity, is only partially required for this rejuvenated immunity. The up-regulation of DAF-16/FOXO and HSF-1 decreases the expression of the zip-10/bZIP transcription factor, which in turn down-regulates INS-7, an agonistic insulin-like peptide, resulting in further reduction of insulin/IGF-1 signaling (IIS). Thus, reduced IIS prevents immune aging via the up-regulation of anti-aging transcription factors that modulate an endocrine insulin-like peptide through a feedforward mechanism. Because many functions of IIS are conserved across phyla, our study may lead to the development of strategies against immune aging in humans.


Assuntos
Envelhecimento/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Transdução de Sinais/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Regulação para Baixo/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Longevidade/fisiologia , Receptor de Insulina/metabolismo , Ativação Transcricional/fisiologia , Regulação para Cima/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Aging Cell ; 20(1): e13300, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33382195

RESUMO

Dietary restriction extends lifespan in various organisms by reducing the levels of both nutrients and non-nutritional food-derived cues. However, the identity of specific food-derived chemical cues that alter lifespan remains unclear. Here, we identified several volatile attractants that decreased the longevity on food deprivation, a dietary restriction regimen in Caenorhabditis elegans. In particular, we found that the odor of diacetyl decreased the activity of DAF-16/FOXO, a life-extending transcription factor acting downstream of insulin/IGF-1 signaling. We then demonstrated that the odor of lactic acid bacteria, which produce diacetyl, reduced the nuclear accumulation of DAF-16/FOXO. Unexpectedly, we showed that the odor of diacetyl decreased longevity independently of two established diacetyl receptors, ODR-10 and SRI-14, in sensory neurons. Thus, diacetyl, a food-derived odorant, may shorten food deprivation-induced longevity via decreasing the activity of DAF-16/FOXO through binding to unidentified receptors.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Diacetil/efeitos adversos , Fatores de Transcrição Forkhead/metabolismo , Odorantes/análise , Animais , Dietoterapia , Regulação para Baixo , Longevidade
8.
Aging Cell ; 19(6): e13150, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32475074

RESUMO

Excessive glucose causes various diseases and decreases lifespan by altering metabolic processes, but underlying mechanisms remain incompletely understood. Here, we show that Lipin 1/LPIN-1, a phosphatidic acid phosphatase and a putative transcriptional coregulator, prevents life-shortening effects of dietary glucose on Caenorhabditis elegans. We found that depletion of lpin-1 decreased overall lipid levels, despite increasing the expression of genes that promote fat synthesis and desaturation, and downregulation of lipolysis. We then showed that knockdown of lpin-1 altered the composition of various fatty acids in the opposite direction of dietary glucose. In particular, the levels of two ω-6 polyunsaturated fatty acids (PUFAs), linoleic acid and arachidonic acid, were increased by knockdown of lpin-1 but decreased by glucose feeding. Importantly, these ω-6 PUFAs attenuated the short lifespan of glucose-fed lpin-1-inhibited animals. Thus, the production of ω-6 PUFAs is crucial for protecting animals from living very short under glucose-rich conditions.


Assuntos
Caenorhabditis elegans/enzimologia , Ácidos Graxos Insaturados/metabolismo , Glucose/metabolismo , Fosfatidato Fosfatase/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Dieta , Humanos
9.
mSphere ; 5(3)2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376697

RESUMO

In numerous instances, tracking the biological significance of a nucleic acid sequence can be augmented through the identification of environmental niches in which the sequence of interest is present. Many metagenomic data sets are now available, with deep sequencing of samples from diverse biological niches. While any individual metagenomic data set can be readily queried using web-based tools, meta-searches through all such data sets are less accessible. In this brief communication, we demonstrate such a meta-metagenomic approach, examining close matches to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in all high-throughput sequencing data sets in the NCBI Sequence Read Archive accessible with the "virome" keyword. In addition to the homology to bat coronaviruses observed in descriptions of the SARS-CoV-2 sequence (F. Wu, S. Zhao, B. Yu, Y. M. Chen, et al., Nature 579:265-269, 2020, https://doi.org/10.1038/s41586-020-2008-3; P. Zhou, X. L. Yang, X. G. Wang, B. Hu, et al., Nature 579:270-273, 2020, https://doi.org/10.1038/s41586-020-2012-7), we note a strong homology to numerous sequence reads in metavirome data sets generated from the lungs of deceased pangolins reported by Liu et al. (P. Liu, W. Chen, and J. P. Chen, Viruses 11:979, 2019, https://doi.org/10.3390/v11110979). While analysis of these reads indicates the presence of a similar viral sequence in pangolin lung, the similarity is not sufficient to either confirm or rule out a role for pangolins as an intermediate host in the recent emergence of SARS-CoV-2. In addition to the implications for SARS-CoV-2 emergence, this study illustrates the utility and limitations of meta-metagenomic search tools in effective and rapid characterization of potentially significant nucleic acid sequences.IMPORTANCE Meta-metagenomic searches allow for high-speed, low-cost identification of potentially significant biological niches for sequences of interest.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/veterinária , Eutérios/virologia , Pneumopatias/veterinária , Metagenômica/métodos , Animais , Sequência de Bases , Quirópteros/virologia , Infecções por Coronavirus/virologia , Pulmão/virologia , Pneumopatias/virologia , SARS-CoV-2 , Alinhamento de Sequência
10.
PLoS Genet ; 16(3): e1008617, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130226

RESUMO

The oligosaccharyl transferase (OST) protein complex mediates the N-linked glycosylation of substrate proteins in the endoplasmic reticulum (ER), which regulates stability, activity, and localization of its substrates. Although many OST substrate proteins have been identified, the physiological role of the OST complex remains incompletely understood. Here we show that the OST complex in C. elegans is crucial for ER protein homeostasis and defense against infection with pathogenic bacteria Pseudomonas aeruginosa (PA14), via immune-regulatory PMK-1/p38 MAP kinase. We found that genetic inhibition of the OST complex impaired protein processing in the ER, which in turn up-regulated ER unfolded protein response (UPRER). We identified vitellogenin VIT-6 as an OST-dependent glycosylated protein, critical for maintaining survival on PA14. We also showed that the OST complex was required for up-regulation of PMK-1 signaling upon infection with PA14. Our study demonstrates that an evolutionarily conserved OST complex, crucial for ER homeostasis, regulates host defense mechanisms against pathogenic bacteria.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Retículo Endoplasmático/metabolismo , Proteostase/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Hexosiltransferases/metabolismo , Imunidade Inata/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Membrana/metabolismo , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Regulação para Cima/fisiologia , Vitelogeninas/metabolismo
11.
Sci Rep ; 8(1): 14836, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287841

RESUMO

Mild inhibition of mitochondrial respiration leads to longevity. Disruption of mitochondrial respiratory components extends lifespan in Caenorhabditis elegans, but the effects appear to be complex and the underlying mechanism for lifespan regulation by mitochondrial respiratory genes is still not fully understood. Here, we investigated the role of Y82E9BR.3, a worm homolog of the ATP synthase subunit C, in modulating longevity in C. elegans. We found that the Y82E9BR.3 protein is localized in mitochondria and expressed in various tissues throughout development. RNAi knockdown of Y82E9BR.3 extends lifespan, decreases the accumulation of lipofuscin, and affects various physiological processes, including development delay, reproduction impairment and slow behavior. Further tissue-specific RNAi analysis showed that the intestine is a crucial organ for the longevity effects conferred by Y82E9BR.3 RNAi. Moreover, we demonstrated that lifespan extension by Y82E9BR.3 RNAi is associated with reduced mitochondrial function, as well as the suppression of complex I activity in mitochondria. Unexpectedly, Y82E9BR.3 RNAi knock down did not influence the whole-worm ATP level. Our findings first reveal the crucial role of Y82E9BR.3 in mitochondrial function and the underlying mechanism of how Y82E9BR.3 regulates lifespan in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Longevidade/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Respiração Celular , Intestinos/enzimologia , Lipofuscina/metabolismo , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fenótipo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Interferência de RNA
12.
Methods Mol Biol ; 1742: 213-225, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29330803

RESUMO

C. elegans has been widely used as a model organism for basic biological research and is particularly amenable for molecular genetic studies using a broad repertoire of techniques. Biochemical approaches, including Western blot analysis, have emerged as a powerful tool in C. elegans biology for understanding molecular mechanisms that link genotypes to phenotypes. Here, we provide a protocol for Western blot analysis using protein extracts obtained from C. elegans samples.


Assuntos
Western Blotting/métodos , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Eletroforese em Gel de Poliacrilamida , Genótipo , Modelos Animais , Fenótipo
13.
F1000Res ; 6: 1515, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29123644

RESUMO

Background: α-arrestins are a family of proteins that are implicated in multiple biological processes, including metabolism and receptor desensitization. Methods: Here, we sought to examine the roles of α-arrestins in the longevity of Caenorhabditis elegans through an RNA interference screen. Results: We found that feeding worms with bacteria expressing double-stranded RNA against each of 24 out of total 29 C. elegans α-arrestins had little effect on lifespan. Thus, individual C. elegans α-arrestins may have minor effects on longevity. Conclusions: This study will provide useful information for future research on the functional role of α-arrestins in aging and longevity.

14.
EMBO J ; 36(8): 1046-1065, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28283579

RESUMO

Mitochondria play key roles in cellular immunity. How mitochondria contribute to organismal immunity remains poorly understood. Here, we show that HSP-60/HSPD1, a major mitochondrial chaperone, boosts anti-bacterial immunity through the up-regulation of p38 MAP kinase signaling. We first identify 16 evolutionarily conserved mitochondrial components that affect the immunity of Caenorhabditis elegans against pathogenic Pseudomonas aeruginosa (PA14). Among them, the mitochondrial chaperone HSP-60 is necessary and sufficient to increase resistance to PA14. We show that HSP-60 in the intestine and neurons is crucial for the resistance to PA14. We then find that p38 MAP kinase signaling, an evolutionarily conserved anti-bacterial immune pathway, is down-regulated by genetic inhibition of hsp-60, and up-regulated by increased expression of hsp-60 Overexpression of HSPD1, the mammalian ortholog of hsp-60, increases p38 MAP kinase activity in human cells, suggesting an evolutionarily conserved mechanism. Further, cytosol-localized HSP-60 physically binds and stabilizes SEK-1/MAP kinase kinase 3, which in turn up-regulates p38 MAP kinase and increases immunity. Our study suggests that mitochondrial chaperones protect host eukaryotes from pathogenic bacteria by up-regulating cytosolic p38 MAPK signaling.


Assuntos
Caenorhabditis elegans/imunologia , Chaperonina 60/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Proteínas Mitocondriais/imunologia , Pseudomonas aeruginosa/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Chaperonina 60/genética , Humanos , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/imunologia , Sistema de Sinalização das MAP Quinases/genética , Proteínas Mitocondriais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
15.
Genes Dev ; 30(9): 1047-57, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27125673

RESUMO

Environmental fluctuations influence organismal aging by affecting various regulatory systems. One such system involves sensory neurons, which affect life span in many species. However, how sensory neurons coordinate organismal aging in response to changes in environmental signals remains elusive. Here, we found that a subset of sensory neurons shortens Caenorhabditis elegans' life span by differentially regulating the expression of a specific insulin-like peptide (ILP), INS-6. Notably, treatment with food-derived cues or optogenetic activation of sensory neurons significantly increases ins-6 expression and decreases life span. INS-6 in turn relays the longevity signals to nonneuronal tissues by decreasing the activity of the transcription factor DAF-16/FOXO. Together, our study delineates a mechanism through which environmental sensory cues regulate aging rates by modulating the activities of specific sensory neurons and ILPs.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Alimentos , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Insulina/genética , Longevidade/genética , Hormônios Peptídicos/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sinais (Psicologia) , Meio Ambiente , Fatores de Transcrição Forkhead/metabolismo , Insulina/metabolismo , Optogenética , Hormônios Peptídicos/metabolismo , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais
16.
Genes Dev ; 29(23): 2490-503, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26637528

RESUMO

Glucose-rich diets shorten the life spans of various organisms. However, the metabolic processes involved in this phenomenon remain unknown. Here, we show that sterol regulatory element-binding protein (SREBP) and mediator-15 (MDT-15) prevent the life-shortening effects of a glucose-rich diet by regulating fat-converting processes in Caenorhabditis elegans. Up-regulation of the SREBP/MDT-15 transcription factor complex was necessary and sufficient for alleviating the life-shortening effect of a glucose-rich diet. Glucose feeding induced key enzymes that convert saturated fatty acids (SFAs) to unsaturated fatty acids (UFAs), which are regulated by SREBP and MDT-15. Furthermore, SREBP/MDT-15 reduced the levels of SFAs and moderated glucose toxicity on life span. Our study may help to develop strategies against elevated blood glucose and free fatty acids, which cause glucolipotoxicity in diabetic patients.


Assuntos
Envelhecimento/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Fatores de Transcrição/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/genética , Dieta , Sacarose Alimentar/farmacologia , Indução Enzimática/efeitos dos fármacos , Ácidos Graxos Dessaturases/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Glucose/metabolismo , Glucose/farmacologia , Glucose/toxicidade , Interferência de RNA , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Fatores de Transcrição/genética
17.
Aging Cell ; 14(1): 8-16, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25339542

RESUMO

Nutrients including carbohydrates, proteins, lipids, vitamins, and minerals regulate various physiological processes and are essential for the survival of organisms. Reduced overall caloric intake delays aging in various organisms. However, the role of each nutritional component in the regulation of lifespan is not well established. In this review, we describe recent studies focused on the regulatory role of each type of nutrient in aging. Moreover, we will discuss how the amount or composition of each nutritional component may influence longevity or health in humans.


Assuntos
Envelhecimento/fisiologia , Alimentos , Envelhecimento/efeitos dos fármacos , Carboidratos da Dieta/farmacologia , Gorduras na Dieta/farmacologia , Proteínas Alimentares/farmacologia , Humanos , Minerais/farmacologia , Vitaminas/farmacologia
18.
Aging Cell ; 12(6): 1073-81, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23879233

RESUMO

Target of rapamycin (TOR) signaling is an evolutionarily well-conserved pathway that regulates various physiologic processes, including aging and metabolism. One of the key downstream components of TOR signaling is ribosomal protein S6 kinase (S6K) whose inhibition extends the lifespan of yeast, Caenorhabditis elegans, Drosophila, and mice. Here, we demonstrate that the activation of heat shock factor 1 (HSF-1), a crucial longevity transcription factor known to act downstream of the insulin/IGF-1 signaling (IIS) pathway, mediates the prolonged lifespan conferred by mutations in C. elegans S6K (rsks-1). We found that hsf-1 is required for the longevity caused by down-regulation of components in TOR signaling pathways, including TOR and S6K. The induction of a small heat-shock protein hsp-16, a transcriptional target of HSF-1, mediates the long lifespan of rsks-1 mutants. Moreover, we show that synergistic activation of HSF-1 is required for the further enhanced longevity caused by simultaneous down-regulation of TOR and IIS pathways. Our findings suggest that HSF-1 acts as an essential longevity factor that intersects both IIS and TOR signaling pathways.


Assuntos
Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Longevidade , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Regulação para Baixo , Camundongos , Mutação/genética , Estresse Oxidativo , Peptídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Estrutura Quaternária de Proteína , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo
19.
Front Genet ; 3: 218, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23087711

RESUMO

Many environmental factors that dynamically change in nature influence various aspects of animal physiology. Animals are equipped with sensory neuronal systems that help them properly sense and respond to environmental factors. Several studies have shown that chemosensory and thermosensory neurons affect the lifespan of invertebrate model animals, including Caenorhabditis elegans and Drosophila melanogaster. Although the mechanisms by which these sensory systems modulate lifespan are incompletely understood, hormonal signaling pathways have been implicated in sensory system-mediated lifespan regulation. In this review, we describe findings regarding how sensory nervous system components elicit physiological changes to regulate lifespan in invertebrate models, and discuss their implications in mammalian aging.

20.
PLoS Genet ; 8(12): e1003133, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284299

RESUMO

The sensory systems of multicellular organisms are designed to provide information about the environment and thus elicit appropriate changes in physiology and behavior. In the nematode Caenorhabditis elegans, sensory neurons affect the decision to arrest during development in a diapause state, the dauer larva, and modulate the lifespan of the animals in adulthood. However, the mechanisms underlying these effects are incompletely understood. Using whole-genome microarray analysis, we identified transcripts whose levels are altered by mutations in the intraflagellar transport protein daf-10, which result in impaired development and function of many sensory neurons in C. elegans. In agreement with existing genetic data, the expression of genes regulated by the transcription factor DAF-16/FOXO was affected by daf-10 mutations. In addition, we found altered expression of transcriptional targets of the DAF-12/nuclear hormone receptor in the daf-10 mutants and showed that this pathway influences specifically the dauer formation phenotype of these animals. Unexpectedly, pathogen-responsive genes were repressed in daf-10 mutant animals, and these sensory mutants exhibited altered susceptibility to and behavioral avoidance of bacterial pathogens. Moreover, we found that a solute transporter gene mct-1/2, which was induced by daf-10 mutations, was necessary and sufficient for longevity. Thus, sensory input seems to influence an extensive transcriptional network that modulates basic biological processes in C. elegans. This situation is reminiscent of the complex regulation of physiology by the mammalian hypothalamus, which also receives innervations from sensory systems, most notably the visual and olfactory systems.


Assuntos
Caenorhabditis elegans , Longevidade , Células Receptoras Sensoriais , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Fatores de Transcrição Forkhead , Insulina/genética , Insulina/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Longevidade/genética , Longevidade/fisiologia , Mutação , Fenótipo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...