Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35214555

RESUMO

Classifying space targets from debris is critical for radar resource management as well as rapid response during the mid-course phase of space target flight. Due to advances in deep learning techniques, various approaches have been studied to classify space targets by using micro-Doppler signatures. Previous studies have only used micro-Doppler signatures such as spectrogram and cadence velocity diagram (CVD), but in this paper, we propose a method to generate micro-Doppler signatures taking into account the relative incident angle that a radar can obtain during the target tracking process. The AlexNet and ResNet-18 networks, which are representative convolutional neural network architectures, are transfer-learned using two types of datasets constructed using the proposed and conventional signatures to classify six classes of space targets and a debris-cone, rounded cone, cone with empennages, cylinder, curved plate, and square plate. Among the proposed signatures, the spectrogram had lower classification accuracy than the conventional spectrogram, but the classification accuracy increased from 88.97% to 92.11% for CVD. Furthermore, when recalculated not with six classes but simply with only two classes of precessing space targets and tumbling debris, the proposed spectrogram and CVD show the classification accuracy of over 99.82% for both AlexNet and ResNet-18. Specially, for two classes, CVD provided results with higher accuracy than the spectrogram.


Assuntos
Redes Neurais de Computação , Voo Espacial , Placas Ósseas , Radar , Ultrassonografia Doppler
2.
Sensors (Basel) ; 20(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059413

RESUMO

In this paper, we investigate the so-called noise propagation effect in a mixed radio-frequency/free-space optical (RF/FSO) amplifying-and-forwarding (AF) relaying system that is applied for data transmission in wireless sensor networks. The noise propagation could be essentially severe when battery-charged sensor nodes have very limited transmit power. We provide an exact expression on the cumulative distribution function (CDF) of end-to-end signal-to-noise power ratio (SNR) for a dual-hop mixed RF/FSO AF relaying system. We assume a tightly power-constrained amplifying gain at the relay, which has been usually ignored in existing performance studies for the mixed RF/FSO AF system. It however should be considered to properly evaluate the noise propagation effect especially if the relaying power is not infinite or the sensor has a poor budget in transmit power. We apply the derived exact CDF to evaluate the system performances such as outage probability, average bit-error rate, and ergodic capacity. Numerical investigation is used to justify that the proposed analysis is exactly matched with the simulation and shows that the performance gap caused by the inclusion of the noise propagation effect is significant (about 2-12%) especially when the SNR per hop is in the medium- or the low-SNR ranges (i.e., at 10-20 dB).

3.
Imaging Sci Dent ; 49(4): 273-279, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31915612

RESUMO

PURPOSE: This study was performed to investigate the effects of energy level, reconstruction kernel, and tube rotation time on Hounsfield unit (HU) values of hydroxyapatite (HA) in virtual monochromatic images (VMIs) obtained with dual-energy computed tomography (DECT) (Siemens Healthineers, Erlangen, Germany). MATERIALS AND METHODS: A bone density calibration phantom with 3 HA inserts of different densities (CTWATER®; 0, 100, and 200 mg of HA/cm3) was scanned using a twin-beam DECT scanner at 120 kVp with tube rotation times of 0.5 and 1.0 seconds. The VMIs were reconstructed by changing the energy level (with options of 40 keV, 70 keV, and 140 keV). In order to investigate the impact of the reconstruction kernel, virtual monochromatic images were reconstructed after changing the kernel from body regular 40 (Br40) to head regular 40 (Hr40) in the reconstruction phase. The mean HU value was measured by placing a circular region of interests (ROIs) in the middle of each insert obtained from the VMIs. The HU values were compared with regard to energy level, reconstruction kernel, and tube rotation time. RESULTS: Hydroxyapatite density was strongly correlated with HU values (correlation coefficient=0.678, P<0.05). For the HA 100 and 200 inserts, HU decreased significantly at increased energy levels (correlation coefficient= -0.538, P<0.05) but increased by 70 HU when using Hr40 rather than Br40 (correlation coefficient=0.158, P<0.05). The tube rotation time did not significantly affect the HU (P>0.05). CONCLUSION: The HU values of hydroxyapatite were strongly correlated with hydroxyapatite density and energy level in VMIs obtained with DECT.

4.
Sensors (Basel) ; 17(11)2017 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-29156570

RESUMO

In this paper, we model and investigate the random access (RA) performance of sensor nodes (SN) in a wireless sensor network (WSN). In the WSN, a central head sensor (HS) collects the information from distributed SNs, and jammers disturb the information transmission primarily by generating interference. In this paper, two jamming attacks are considered: power and code jamming. Power jammers (if they are friendly jammers) generate noises and, as a result, degrade the quality of the signal from SNs. Power jamming is equally harmful to all the SNs that are accessing HS and simply induces denial of service (DoS) without any need to hack HS or SNs. On the other hand, code jammers mimic legitimate SNs by sending fake signals and thus need to know certain system parameters that are used by the legitimate SNs. As a result of code jamming, HS falsely allocates radio resources to SNs. The code jamming hence increases the failure probability in sending the information messages, as well as misleads the usage of radio resources. In this paper, we present the probabilities of successful preamble transmission with power ramping according to the jammer types and provide the resulting throughput and delay of information transmission by SNs, respectively. The effect of two jamming attacks on the RA performances is compared with numerical investigation. The results show that, compared to RA without jammers, power and code jamming degrade the throughput by up to 30.3% and 40.5%, respectively, while the delay performance by up to 40.1% and 65.6%, respectively.

5.
Sensors (Basel) ; 17(11)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29165373

RESUMO

This paper presents a price-searching model in which a source node (Alice) seeks friendly jammers that prevent eavesdroppers (Eves) from snooping legitimate communications by generating interference or noise. Unlike existing models, the distributed jammers also have data to send to their respective destinations and are allowed to access Alice's channel if it can transmit sufficient jamming power, which is referred to as collaborative jamming in this paper. For the power used to deliver its own signal, the jammer should pay Alice. The price of the jammers' signal power is set by Alice and provides a tradeoff between the signal and the jamming power. This paper presents, in closed-form, an optimal price that maximizes Alice's benefit and the corresponding optimal power allocation from a jammers' perspective by assuming that the network-wide channel knowledge is shared by Alice and jammers. For a multiple-jammer scenario where Alice hardly has the channel knowledge, this paper provides a distributed and interactive price-searching procedure that geometrically converges to an optimal price and shows that Alice by a greedy selection policy achieves certain diversity gain, which increases log-linearly as the number of (potential) jammers grows. Various numerical examples are presented to illustrate the behavior of the proposed model.

6.
Imaging Sci Dent ; 42(2): 65-70, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22783473

RESUMO

PURPOSE: The aim of this study was to compare the effective dose for imaging of mandible between multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). An MDCT with low dose technique was also compared with them. MATERIALS AND METHODS: Thermoluminescent dosimeter (TLD) chips were placed at 25 organ sites of an anthropomorphic phantom. The mandible of the phantom was exposed using 2 different types of MDCT units (Somatom Sensation 10 for standard-dose MDCT, Somatom Emotion 6 for low-dose MDCT) and 3 different CBCT units (AZ3000CT, Implagraphy, and Kavo 3D eXaM). The radiation absorbed dose was measured and the effective dose was calculated according to the ICRP 2007 report. RESULTS: The effective dose was the highest for Somatom Sensation 10 (425.84 µSv), followed by AZ3000CT (332.4 µSv), Somatom Emotion 6 (199.38 µSv), and 3D eXaM (111.6 µSv); it was the lowest for Implagraphy (83.09 µSv). The CBCT showed significant variation in dose level with different device. CONCLUSION: The effective doses of MDCTs were not significantly different from those of CBCTs for imaging of mandible. The effective dose of MDCT could be markedly decreased by using the low-dose technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...