Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38607096

RESUMO

Samaria-doped ceria (SDC) overlayers were deposited on Ag cathodes by sputtering. The SDC sputtering time was varied to investigate the properties of the Ag-SDC overlayer cathode-coated fuel cells depending on the thickness of the SDC overlayers. Among the fabricated fuel cells, Ag with a 10-nm-thick SDC overlayer (Ag-SDC10) cathode-coated fuel cell exhibited the highest peak power density of 6.587 mW/cm2 at 450 °C, showing higher performance than a pristine Pt-coated fuel cell. Moreover, electrochemical impedance spectroscopy revealed that the Ag-SDC10 cathode-coated fuel cell significantly mitigated polarization loss originating from enhanced oxygen reduction reaction kinetics compared to the pristine Ag-coated fuel cell.

2.
Elife ; 122024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502563

RESUMO

Compartment formation in interphase chromosomes is a result of spatial segregation between euchromatin and heterochromatin on a few megabase pairs (Mbp) scale. On the sub-Mbp scales, topologically associating domains (TADs) appear as interacting domains along the diagonal in the ensemble averaged Hi-C contact map. Hi-C experiments showed that most of the TADs vanish upon deleting cohesin, while the compartment structure is maintained, and perhaps even enhanced. However, closer inspection of the data reveals that a non-negligible fraction of TADs is preserved (P-TADs) after cohesin loss. Imaging experiments show that, at the single-cell level, TAD-like structures are present even without cohesin. To provide a structural basis for these findings, we first used polymer simulations to show that certain TADs with epigenetic switches across their boundaries survive after depletion of loops. More importantly, the three-dimensional structures show that many of the P-TADs have sharp physical boundaries. Informed by the simulations, we analyzed the Hi-C maps (with and without cohesin) in mouse liver and human colorectal carcinoma cell lines, which affirmed that epigenetic switches and physical boundaries (calculated using the predicted 3D structures using the data-driven HIPPS method that uses Hi-C as the input) explain the origin of the P-TADs. Single-cell structures display TAD-like features in the absence of cohesin that are remarkably similar to the findings in imaging experiments. Some P-TADs, with physical boundaries, are relevant to the retention of enhancer-promoter/promoter-promoter interactions. Overall, our study shows that preservation of a subset of TADs upon removing cohesin is a robust phenomenon that is valid across multiple cell lines.


Assuntos
Cromatina , Coesinas , Animais , Camundongos , Humanos , Cromossomos , Heterocromatina , Interfase
3.
Nanomaterials (Basel) ; 13(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903764

RESUMO

This study demonstrated a silver (Ag) and samarium-doped ceria (SDC) mixed ceramic and metal composite (i.e., cermet) as a cathode for low-temperature solid oxide fuel cells (LT-SOFCs). Introducing the Ag-SDC cermet cathode for LT-SOFCs revealed that the ratio between Ag and SDC, which is a crucial factor for catalytic reactions, can be tuned by the co-sputtering process, resulting in enhanced triple phase boundary (TPB) density in the nanostructure. Ag-SDC cermet not only successfully performed as a cathode to increase the performance of LT-SOFCs by decreasing polarization resistance but also exceeded the catalytic activity of platinum (Pt) due to the improved oxygen reduction reaction (ORR). It was also found that less than half of Ag content was effective to increase TPB density, preventing oxidation of the Ag surface as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...