Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(9): e2306819, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38152985

RESUMO

In surface-enhanced Raman spectroscopy (SERS), 2D materials are explored as substrates owing to their chemical stability and reproducibility. However, they exhibit lower enhancement factors (EFs) compared to noble metal-based SERS substrates. This study demonstrates the application of ultrathin covellite copper sulfide (CuS) as a cost-effective SERS substrate with a high EF value of 7.2 × 104 . The CuS substrate is readily synthesized by sulfurizing a Cu thin film at room temperature, exhibiting a Raman signal enhancement comparable to that of an Au noble metal substrate of similar thickness. Furthermore, computational simulations using the density functional theory are employed and time-resolved photoluminescence measurements are performed to investigate the enhancement mechanisms. The results indicate that polar covalent bonds (Cu─S) and strong interlayer interactions in the ultrathin CuS substrate increase the probability of charge transfer between the analyte molecules and the CuS surface, thereby producing enhanced SERS signals. The CuS SERS substrate demonstrates the selective detection of various dye molecules, including rhodamine 6G, methylene blue, and safranine O. Furthermore, the simplicity of CuS synthesis facilitates large-scale production of SERS substrates with high spatial uniformity, exhibiting a signal variation of less than 5% on a 4-inch wafer.

2.
Nanotechnology ; 33(50)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36095982

RESUMO

In the present study, we showed that hydrophilic graphene can serve as an ideal imaging plate for biological specimens. Graphene being a single-atom-thick semi-metal with low secondary electron emission, array tomography analysis of serial sections of biological specimens on a graphene substrate showed excellent image quality with improvedz-axis resolution, without including any conductive surface coatings. However, the hydrophobic nature of graphene makes the placement of biological specimens difficult; graphene functionalized with polydimethylsiloxane oligomer was fabricated using a simple soft lithography technique and then processed with oxygen plasma to provide hydrophilic graphene with minimal damage to graphene. High-quality scanning electron microscopy images of biological specimens free from charging effects or distortion were obtained, and the optical transparency of graphene enabled fluorescence imaging of the specimen; high-resolution correlated electron and light microscopy analysis of the specimen became possible with the hydrophilic graphene plate.


Assuntos
Grafite , Dimetilpolisiloxanos , Microscopia Eletrônica de Varredura , Imagem Óptica , Oxigênio
3.
ACS Nano ; 16(6): 9278-9286, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35699264

RESUMO

In the present study, we used the electrochemical transparency of graphene to show that the direct intercalation of alkali-metal cations is not a prerequisite for the redox reaction of Prussian blue (PB). PB thin films passivated with monolayer graphene still underwent electrochemical redox reactions in the presence of alkali-metal ions (K+ or Na+) despite the inability of the cations to penetrate the graphene and be incorporated into the PB. Graphene passivation not only preserved the electrochemical activity of the PB but also substantially enhanced the stability of the PB. As a proof of concept, we showed that a transparent graphene electrode covering PB can be used as an excellent hydrogen peroxide transducer, thereby demonstrating the possibility of realizing an electrochemical sensor capable of long-term measurements.

4.
Molecules ; 26(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917209

RESUMO

Various intriguing quantum transport measurements for carbon nanotubes (CNTs) based on their unique electronic band structures have been performed adopting a field-effect transistor (FET), where the contact resistance represents the interaction between the one-dimensional and three-dimensional systems. Recently, van der Waals (vdW) gap tunneling spectroscopy for single-walled CNTs with indium-metal contacts was performed adopting an FET device, providing the direct assignment of the subband location in terms of the current-voltage characteristic. Here, we extend the vdW gap tunneling spectroscopy to multi-walled CNTs, which provides transport spectroscopy in a tunneling regime of ~1 eV, directly reflecting the electronic density of states. This new quantum transport regime may allow the development of novel quantum devices by selective electron (or hole) injection to specific subbands.

5.
Nanoscale ; 11(32): 15374-15381, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31389946

RESUMO

Semiconductor gas sensors are advantageous in miniaturization and can be used in a wide range of applications, yet consume large power due to high operating temperature. Here we demonstrated the ability of nanoscale scratches produced with mechanical abrasion to enhance the chemical sensitivity of thin-film-type semiconductor sensors. Well-aligned arrays of scratches parallel to the electrical current direction between the source and drain electrodes were made, using typical polishing machines with diamond suspensions, on semiconductor thin films produced with various deposition methods such as atomic layer deposition (ALD), sputtering, and the sol-gel technique. Processing with sharp diamond microparticles left nano-grooves on the surface, together with changes in chemical composition. For all of the tested metal oxide thin films, the introduction of scratches yielded increased quantities of oxygen vacancies and metallic components. Scratched ZnO devices exhibited superior performance even at room temperature, as predicted by a computational simulation that showed increased binding energy of gas molecules on defects. The scratch technique shown in the present study may be used to produce dense arrays of nanometer-scale, chemically functionalized line patterns on substrates larger than a few tens of centimeters with minimum cost, which in turn may be used in a variety of applications including massive arrays of sensors displaying high sensitivity.

6.
RSC Adv ; 8(40): 22755-22762, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35539749

RESUMO

Recently, three-dimensional (3D) printing has garnered tremendous amounts of attention in various applications. In this study, we suggest a facile means of creating 3D-printed foldable electrodes on paper via the direct printing of composite pastes consisting of conductive fillers and a thermoplastic elastomer. The 3D-printability of the prepared composite pastes is investigated depending on the rheological properties. It is revealed that the composite paste with a high storage modulus would enable the formation of highly conductive features with a resistance of 0.4 Ω cm-1 on three-dimensional paper structures. The mechanical bending/folding stability levels of the printed electrodes are evaluated to judge the possibility of realizing 3D-printed origami electronics. The resistance is changed slightly with a normalized resistance value of 2.3, when the printed electrodes are folded with a folding angle of 150°. It is demonstrated that the 3D-printed composite electrodes are applicable to various origami electronics, including electrical circuits, strain sensors and electrochemical sensors.

7.
Nano Lett ; 15(8): 5414-9, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26177864

RESUMO

Electrical stimulation through direct electrical activation has been widely used to recover the function of neurons, primarily through the extracellular application of thin film electrodes. However, studies using extracellular methods show limited ability to reveal correlations between the cells and the electrical stimulation due to interference from external sources such as membrane capacitance and culture medium. Here, we demonstrate long-term intracellular electrical stimulation of undamaged pheochromocytoma (PC-12) cells by utilizing a vertical nanowire electrode array (VNEA). The VNEA was prepared by synthesizing silicon nanowires on a Si substrate through a vapor-liquid-solid (VLS) mechanism and then fabricating them into electrodes with semiconductor nanodevice processing. PC-12 cells were cultured on the VNEA for 4 days with intracellular electrical stimulation and then a 2-day stabilization period. Periodic scanning via two-photon microscopy confirmed that the electrodes pierced the cells without inducing damage. Electrical stimulation through the VNEA enhances cellular differentiation and neurite outgrowth by about 50% relative to extracellular stimulation under the same conditions. VNEA-mediated stimulation also revealed that cellular differentiation and growth in the cultures were dependent on the potential used to stimulate them. Intracellular stimulation using nanowires could pave the way for controlled cellular differentiation and outgrowth studies in living cells.

8.
Nanotechnology ; 26(33): 335701, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26222018

RESUMO

In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV-ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions.


Assuntos
Técnicas Citológicas/instrumentação , Eletrofisiologia/instrumentação , Nanotubos de Carbono/química , Animais , Células Cultivadas , Técnicas Citológicas/métodos , Eletrodos , Eletrofisiologia/métodos , Desenho de Equipamento , Grafite/química , Camundongos
9.
Nanoscale Res Lett ; 9(1): 56, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24484729

RESUMO

The single living cell action potential was measured in an intracellular mode by using a vertical nanoelectrode. For intracellular interfacing, Si nanowires were vertically grown in a controlled manner, and optimum conditions, such as diameter, length, and nanowire density, were determined by culturing cells on the nanowires. Vertical nanowire probes were then fabricated with a complimentary metal-oxide-semiconductor (CMOS) process including sequential deposition of the passivation and electrode layers on the nanowires, and a subsequent partial etching process. The fabricated nanowire probes had an approximately 60-nm diameter and were intracellular. These probes interfaced with a GH3 cell and measured the spontaneous action potential. It successfully measured the action potential, which rapidly reached a steady state with average peak amplitude of approximately 10 mV, duration of approximately 140 ms, and period of 0.9 Hz.

10.
Nanoscale Res Lett ; 8(1): 502, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24279451

RESUMO

Au-coated vertical silicon nanowire electrode array (VSNEA) was fabricated using a combination of bottom-up and top-down approaches by chemical vapor deposition and complementary metal-oxide-semiconductor process for biomolecule sensing. To verify the feasibility for the detection of biomolecules, Au-coated VSNEA was functionalized using peptides having a fluorescent probe. Cyclic voltammograms of the peptide-functionalized Au-coated VSNEA show a steady-state electrochemical current behavior. Because of the critically small dimension and vertically aligned nature of VSNEA, the current density of Au-coated VSNEA was dramatically higher than that of Au film electrodes. Au-coated VSNEA further showed a large current difference with and without peptides that was nine times more than that of Au film electrodes. These results indicate that Au-coated VSENA is highly effective device to detect peptides compared to conventional thin-film electrodes. Au-coated VSNEA can also be used as a divergent biosensor platform in many applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...