Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 45(3): e2300542, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38014607

RESUMO

The visualization and analysis of organic solvents using fluorescent sensors are crucial, given their association with environmental safety and human health. Conventional fluorescent sensors are typically single-use sensors and they often require sophisticated measurement instruments, which limits their practical and diverse applications. Herein, we develop solvatochromic nitrogen and sulfur codoped carbon dots (NS-CDs)-based organogel sensors that display color changes in response to different solvents. NS-CDs are synthesized using a solvothermal method to produce monodispersed particles with exceptional solubility in various organic solvents. NS-CDs exhibit distinct photoluminescent emission spectra that correlate with the solvent polarity, and the solvent-dependent photoluminescent mechanism is investigated in detail. To highlight the potential application of solvatochromic NS-CDs, portable and low-cost NS-CDs-embedded organogel sensors are fabricated. These sensors exhibit highly robust solvatochromic performance despite repeated solvent switches, thus ensuring consistent and reliable measurements in practical applications. This study provides valuable insights into the solvatochromism of carbon dots and opens up new avenues for designing real-time organic solvent sensing platforms.


Assuntos
Carbono , Pontos Quânticos , Humanos , Solventes , Enxofre , Corantes , Nitrogênio
2.
ACS Appl Mater Interfaces ; 15(26): 31765-31775, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37338193

RESUMO

Metalizing three-dimensional (3D)-printed polymers has been spotlighted in the field of manufacturing high-end and customized electrical components. Conventional metalization approaches that rely on the electroless plating (ELP) process typically require the use of noble metal-based catalysts or involve multistep processes, limiting their practical applications. Herein, we propose a straightforward yet effective approach to manufacture 3D-printed polymers with conductive metal layers through a thiol-mediated ELP process without involving an additional catalytic activation process. A photocurable ternary resin based on thiol-ene-acrylate monomers was precisely designed to induce excess thiol moieties on the surface of 3D-printed structures. These exposed thiol moieties served as active sites for metal ion complexion via strong metal-sulfur bonds, allowing the deposition of metal layers on the 3D-printed polymers through the ELP. Diverse metal layers, including Cu, Ag, and NiP, could be deposited onto virtually any 3D-printed structures with high uniformity and adhesion stability. To highlight the potential application of our approach, we fabricated fully functional glucose sensors through the deposition of the Cu layer on 3D-printed electrode models, and these sensors displayed excellent nonenzymatic glucose sensing performance. The proposed approach offers great insights for designing functional metallic structures and opens up new avenues for manufacturing lightweight, customized electrical components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA