Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38758746

RESUMO

In recent decades, extensive research has been directed toward mitigating microbial contamination and preventing biofilm formation. However, many conventional antibiofilm methods rely on hazardous and toxic substances, neglecting potential risks to human health and the environment. Moreover, these approaches often rely on single-strategy mechanisms, utilizing either bactericidal or fouling-resistant agents, which have shown limited efficacy in long-term biofilm suppression. In this study, we propose an efficient and sustainable biofilm-resistant slippery hybrid slippery composite. This composite integrates nontoxic and environmentally friendly materials including chitosan, silicone oil-infused polydimethylsiloxane, and mesoporous silica nanoparticles in a synergistic manner. Leveraging the bacteria-killing properties of chitosan and the antifouling capabilities of the silicone oil layer, the hybrid composite exhibits robust antibiofilm performance against both Gram-positive and Gram-negative bacteria. Furthermore, the inclusion of mesoporous silica nanoparticles enhances the oil absorption capacity and self-replenishing properties, ensuring exceptional biofilm inhibition even under harsh conditions such as exposure to high shear flow and prolonged incubation (7 days). This approach offers promising prospects for developing effective biofilm-resistant materials with a reduced environmental impact and improved long-term performance.

2.
Nat Mater ; 23(4): 453-454, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570636
3.
Nano Converg ; 11(1): 12, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512587

RESUMO

Stretchable and self-adhesive conductive hydrogels hold significant importance across a wide spectrum of applications, including human-machine interfaces, wearable devices, and soft robotics. However, integrating multiple properties, such as high stretchability, strong interfacial adhesion, self-healing capability, and sensitivity, into a single material poses significant technical challenges. Herein, we present a multifunctional conductive hydrogel based on poly(acrylic acid) (PAA), dopamine-functionalized pectin (PT-DA), polydopamine-coated reduction graphene oxide (rGO-PDA), and Fe3+ as an ionic cross-linker. This hydrogel exhibits a combination of high stretchability (2000%), rapid self-healing (~ 94% recovery in 5 s), and robust self-adhesion to various substrates. Notably, the hydrogel demonstrates a remarkable skin adhesion strength of 85 kPa, surpassing previous skin adhesive hydrogels. Furthermore, incorporating rGO within the hydrogel network creates electric pathways, ensuring excellent conductivity (0.56 S m-1). Consequently, these conductive hydrogels exhibit strain-sensing properties with a significant increase in gauge factor (GF) of 14.6, covering an extensive detection range of ~ 1000%, fast response (198 ms) and exceptional cycle stability. These multifunctional hydrogels can be seamlessly integrated into motion detection sensors capable of distinguishing between various strong or subtle movements of the human body.

4.
Soft Robot ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38484295

RESUMO

Soft robotic grippers excel at achieving conformal and reliable contact with objects without the need for complex control algorithms. However, they still lack in grasp and manipulation abilities compared with human hands. In this study, we present a sensorized multi-fingered soft gripper with bioinspired adhesive fingertips that can provide both fingertip-based adhesion grasping and finger-based form closure grasping modes. The gripper incorporates mushroom-like microstructures on its adhesive fingertips, enabling robust adhesion through uniform load shearing. A single fingertip exhibits a maximum load capacity of 4.18 N against a flat substrate. The soft fingers have multiple joints, and each joint can be independently actuated through pneumatic control. This enables diverse bending motions and stable grasping of various objects, with a maximum load capacity of 28.29 N for three fingers. In addition, the soft gripper is equipped with a kirigami-patterned stretchable sensor for motion monitoring and control. We demonstrate the effectiveness of our design by successfully grasping and manipulating a diverse range of objects with varying shapes, sizes, and curvatures. Moreover, we present the practical application of our sensorized soft gripper for remotely controlled cooking.

5.
Environ Res ; 250: 118490, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365052

RESUMO

Agriculturally derived by-products generated during the growth cycles of living organisms as secondary products have attracted increasing interest due to their wide range of biomedical and environmental applications. These by-products are considered promising candidates because of their unique characteristics including chemical stability, profound biocompatibility and offering a green approach by producing the least impact on the environment. Recently, micro/nanoengineering based techniques play a significant role in upgrading their utility, by controlling their structural integrity and promoting their functions at a micro and nano scale. Specifically, they can be used for biomedical applications such as tissue regeneration, drug delivery, disease diagnosis, as well as environmental applications such as filtration, bioenergy production, and the detection of environmental pollutants. This review highlights the diverse role of micro/nano-engineering techniques when applied on agricultural by-products with intriguing properties and upscaling their wide range of applications across the biomedical and environmental fields. Finally, we outline the future prospects and remarkable potential that these agricultural by-products hold in establishing a new era in the realms of biomedical science and environmental research.


Assuntos
Agricultura , Nanotecnologia , Agricultura/métodos , Humanos
6.
Nano Lett ; 24(7): 2188-2195, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324001

RESUMO

Over the past few decades, hydrogels have attracted considerable attention as promising biomedical materials. However, conventional hydrogels require improved mechanical properties, such as brittleness, which significantly limits their widespread use. Recently, hydrogels with remarkably improved toughness have been developed; however, their low biocompatibility must be addressed. In this study, we developed a tough graphene hybrid hydrogel with nanostructures. The resultant hydrogel exhibited remarkable mechanical properties while representing an aligned nanostructure that resembled the extracellular matrix of soft tissue. Owing to the synergistic effect of the topographical properties, and the enhanced biochemical properties, the graphene hybrid hydrogel had excellent stretchability, resilience, toughness, and biocompatibility. Furthermore, the hydrogel displayed outstanding tissue regeneration capabilities (e.g., skin and tendons). Overall, the proposed graphene hybrid tough hydrogel may provide significant insights into the application of tough hydrogels in tissue regeneration.


Assuntos
Grafite , Nanoestruturas , Hidrogéis/química , Grafite/química , Materiais Biocompatíveis/química , Nanoestruturas/uso terapêutico
7.
Microsyst Nanoeng ; 9: 153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38093810

RESUMO

Microscale and nanoscale cilia are ubiquitous in natural systems where they serve diverse biological functions. Bioinspired artificial magnetic cilia have emerged as a highly promising technology with vast potential applications, ranging from soft robotics to highly precise sensors. In this review, we comprehensively discuss the roles of cilia in nature and the various types of magnetic particles utilized in magnetic cilia; additionally, we explore the top-down and bottom-up fabrication techniques employed for their production. Furthermore, we examine the various applications of magnetic cilia, including their use in soft robotics, droplet and particle control systems, fluidics, optical devices, and sensors. Finally, we present our conclusions and the future outlook for magnetic cilia research and development, including the challenges that need to be overcome and the potential for further integration with emerging technologies.

8.
Nat Mater ; 22(8): 933-934, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37524819
9.
Adv Healthc Mater ; 12(29): e2301774, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37485740

RESUMO

As point-of-care testing (POCT) is becoming the new paradigm of medical diagnostics, there is a growing need to develop reliable POCT devices that can be conveniently operated in a minimally invasive manner. However, the clinical potential of POCT diagnostics is yet to be realized, mainly due to the limited and inconsistent amount of collected samples on these devices, undermining their accuracy. This study proposes a new biosensing platform modified with a functional polysuccinimide (PSI)-silica nanoparticle (SNP) composite system that can substantially increase the protein conjugation efficiency by modulating physicochemical interaction with proteins by several hundred percent from an unmodified device. The efficacy of this PSI-SNP system is further validated by applying it on the surface of a microneedle array (MN), which has emerged as a promising POCT device capable of accessing interstitial fluid through minimal penetration of the skin. This PSI-SNP MN is demonstrated to detect a wide array of proteins with high sensitivity on par with conventional whole serum analysis, validated by in vivo animal testing, effectively displaying broad applicability in biomedical engineering.


Assuntos
Técnicas Biossensoriais , Nanocompostos , Animais , Dióxido de Silício/química , Pele , Agulhas
10.
ACS Appl Mater Interfaces ; 15(8): 11042-11052, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36788742

RESUMO

Ionotronic hydrogels have attracted significant attention in emerging fields such as wearable devices, flexible electronics, and energy devices. To date, the design of multifunctional ionotronic hydrogels with strong interfacial adhesion, rapid self-healing, three-dimensional (3D) printing processability, and high conductivity are key requirements for future wearable devices. Herein, we report the rational design and facile synthesis of 3D printable, self-adhesive, self-healing, and conductive ionotronic hydrogels based on the synergistic dual reversible interactions of poly(vinyl alcohol), borax, pectin, and tannic acid. Multifunctional ionotronic hydrogels exhibit strong adhesion to various substrates with different roughness and chemical components, including porcine skin, glass, nitrile gloves, and plastics (normal adhesion strength of 55 kPa on the skin). In addition, the ionotronic hydrogels exhibit intrinsic ionic conductivity imparting strain-sensing properties with a gauge factor of 2.5 up to a wide detection range of approximately 2000%, as well as improved self-healing behavior. Based on these multifunctional properties, we further demonstrate the use of ionotronic hydrogels in the 3D printing process for implementing complex patterns as wearable strain sensors for human motion detection. This study is expected to provide a new avenue for the design of multifunctional ionotronic hydrogels, enabling their potential applications in wearable healthcare devices.


Assuntos
Eletrônica , Cimentos de Resina , Humanos , Suínos , Animais , Condutividade Elétrica , Vidro , Hidrogéis
11.
ACS Appl Mater Interfaces ; 14(50): 55989-55996, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36503219

RESUMO

Biological cilia have exquisitely organized dynamic ultrafine structures with submicron diameters and exceptional aspect ratios, which are self-assembled with ciliary proteins. However, the construction of artificial cilia with size and dynamic functions comparable to biological cilia remains highly challenging. Here, we propose a self-assembly technique that generates magnetoresponsive artificial cilia with a highly ordered 3D structural arrangement using vapor-phase magnetic particles of varying sizes and shapes. We demonstrate that both monodispersed Fe3O4 nanoparticles and Fe microparticles can be assembled layer-by-layer vertically in patterned magnetic fields, generating both "nanoscale" or "microscale" artificial cilia, respectively. The resulting cilia display several structural features, such as diameters of single particle resolution, controllable diameters and lengths spanning from nanometers to micrometers, and accurate positioning. We further demonstrate that both the magnetic nanocilia and microcilia can dynamically and immediately actuate in response to modulated magnetic fields while providing different stroke ranges and actuation torques. Our strategy provides new possibilities for constructing artificial nano- and microcilia with controlled 3D morphology and dynamic field responsiveness using magnetic particles of varied sizes and shapes.


Assuntos
Micropartículas Derivadas de Células , Nanopartículas , Cílios/fisiologia , Campos Magnéticos , Magnetismo , Nanopartículas/química
12.
Nat Commun ; 13(1): 5181, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056031

RESUMO

For decades, bioinspired functional materials have been attracting the interest of many researchers for their remarkable characteristics. In particular, some plant leaves are well known for their inherent superhydrophobic nature. Salvinia molesta, a free-floating aquatic fern, has egg-beater-shaped hierarchical trichomes on its surface of leaves. Due to the unique structure and complex wettability of the hairs, this plant has the ability to maintain a stable thick air layer upon the structure when it is submerged underwater. Often referred to as the "Salvinia Effect," this property is expected to be suitable for use in hydrodynamic drag reduction. However, due to the complex shape of the trichome, currently applied fabrication methods are using a three-dimensional printing system, which is not applicable to mass production because of its severely limited productivity. In this work, artificial Salvinia leaf inspired by S. molesta was fabricated using a conventional soft lithography method assisted with capillary-force-induced clustering of micropillar array. The fabrication method suggested in this work proposes a promising strategy for the manufacturing of Salvinia-inspired hydrodynamic drag reduction surfaces.


Assuntos
Gleiquênias , Traqueófitas , Análise por Conglomerados , Gleiquênias/química , Hidrodinâmica , Molhabilidade
13.
ACS Appl Mater Interfaces ; 14(34): 39478-39488, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35959590

RESUMO

Over the past few decades, extensive research efforts have been devoted to developing surfaces with unique functionalities, such as controlled wettability, antibiofouling, antifogging, and anti-icing behavior, for applications in a wide range of fields, including biomedical devices, optical instruments, microfluidics, and energy conservation and harvesting. However, many of the previously reported approaches have limitations with regard to eco-friendliness, multifunctionality, long-term stability and efficacy, and cost effectiveness. Herein, we propose a scalable bifunctional surface that simultaneously exhibits excellent antifogging and antibiofouling properties based on the synergistic integration of an eco-friendly and bio-friendly polyethylene glycol (PEG) hydrogel, oleamide (OA), and nanoscale architectures in a single flexible platform. We demonstrate that the PEG-OA-nanostructure hybrid exhibits excellent antifogging performance owing to its enhanced water absorption and spreading properties. We further show that the triple hybrid exhibits notable biofilm resistance without the use of toxic biocides or chemicals by integrating the "fouling-resistant" mechanism of the PEG hydrogel, the "fouling-release" mechanism of OA, and the "foulant-killing" mechanism of the nanostructures.

14.
Adv Mater ; 34(24): e2200185, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35417603

RESUMO

Self-assembly of nanoparticles (NPs) is a powerful route to constructing higher-order structures. However, the programmed self-assembly of NPs into non-close-packed, 3D, shape-morphing nanocilia arrays remains elusive, whereas dynamically actuated nanometer cilia are universal in living systems. Here, a programmable self-assembly strategy is presented that can direct magnetic NPs into a highly ordered responsive artificial nanocilia actuator with exquisite nanometer 3D structural arrangements. The self-assembled artificial NP cilia can maintain their structural integrity through the interplay of interparticle interactions. Interestingly, the nanocilia can exhibit a field-responsive actuation motion through "rolling and sliding" between assembled NPs rather than bending the entire ciliary beam. It is demonstrated that oleic acid coated over the NPs acts as a lubricating bearing and enables the rolling/sliding-based actuation of the cilia.


Assuntos
Nanopartículas , Magnetismo , Movimento (Física) , Nanopartículas/química
15.
Int J Biol Macromol ; 204: 345-355, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35149093

RESUMO

Alginate (Alg) beads are low-cost adsorbents used for wastewater remediation. In this work, alginate (Alg) and alginate/xanthan (Alg/XG) blend beads were synthesized by gelation method into calcium chloride and freeze-dried to improve the porosity. Their adsorption efficiency was tested for methylene blue (MB) dye in batch, recirculating and column adsorption systems. The blend beads were characterized using by SEM, FTIR-ATR and X-ray microcomputer tomography (Micro-CT) analyzes. Freeze-dried Alg and Alg/XG beads presented porosity of 46 ± 5% and 77 ± 3%, respectively. Adsorption isotherms of MB on freeze-dried Alg/XG beads indicated better adsorption capacity in comparison to the air-dried ones. Adsorption kinetics and breakthrough curves based on recirculating and vertical column adsorption processes of MB on freeze dried Alg/XG and air-dried Alg/XG beads indicated higher efficiency for the vertical column system packed with freeze dried Alg/XG beads. The removal efficiency of 91% MB by the freeze-dried Alg/XG beads in vertical column remained even after four consecutive adsorption-desorption cycles, disclosing these beads as potential systems for the wastewater treatment.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Alginatos , Concentração de Íons de Hidrogênio , Cinética , Polissacarídeos Bacterianos
16.
Sensors (Basel) ; 22(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35161632

RESUMO

Recently, temperature monitoring with practical colorimetric sensors has been highlighted because they can directly visualize the temperature of surfaces without any power sources or electrical transducing systems. Accordingly, several colorimetric sensors that convert the temperature change into visible color alteration through various physical and chemical mechanisms have been proposed. However, the colorimetric temperature sensors that can be used at subzero temperatures and detect a wide range of temperatures have not been sufficiently explored. Here, we present a colorimetric sensory system that can detect and visualize a wide range of temperatures, even at a temperature below 0 °C. This system was developed with easily affordable materials via a simple fabrication method. The sensory system is mainly fabricated using hydroxypropyl cellulose (HPC) and ethylene glycol as the coolant. In this system, HPC can self-assemble into a temperature-responsive cholesteric liquid crystalline mesophase, and ethylene glycol can prevent the mesophase from freezing at low temperatures. The colorimetric sensory system can quantitatively visualize the temperature and show repeatability in the temperature change from -20 to 25 °C. This simple and reliable sensory system has great potential as a temperature-monitoring system for structures exposed to real environments.


Assuntos
Colorimetria , Cristais Líquidos , Celulose/análogos & derivados , Temperatura
17.
Soft Matter ; 17(7): 1715-1723, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33538288

RESUMO

Biofouling of tubular fluidic devices limits the stability, accuracy, and long-term uses of lab-on-a-chip systems. Healthcare-associated infection by biofilm formations on body-indwelling and extracorporeal tubular medical devices is also a major cause of mortality and morbidity in patients. Although diverse antifouling techniques have been developed to prevent bacterial contamination of fluidic devices based on antimicrobial materials or nanoscale architectures, they still have limitations in biocompatibility, long-term activity, and durability. In this study, a new conceptual tubular fluidic device model that can effectively suppress bacterial contamination based on dynamic surface motions without using bactericidal materials or nanostructures is proposed. The fluidic device is composed of a magneto-responsive multilayered composite. The composite tube can generate dynamic surface deformation with controlled geometries along its inner wall in response to a remote magnetic field. The magnetic field-derived surface wave induces the generation of vortices near the inner wall surface of the tube, enabling sweeping of bacterial cells from the surface. As a result, the dynamic composite tube could effectively prevent biofilm formation for an extended time of 14 days without surface modification with chemical substances or nanostructures.


Assuntos
Anti-Infecciosos , Incrustação Biológica , Nanoestruturas , Antibacterianos , Bactérias , Biofilmes , Incrustação Biológica/prevenção & controle , Humanos
18.
J Mech Behav Biomed Mater ; 114: 104167, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33168488

RESUMO

Biomedical patches have been known as important biomaterial-based medical devices for the clinical treatment of tissue and organ diseases. Inspired by the extracellular matrix-like aligned nanotopographical pattern as well as the unique physical and biocompatible properties of gelatin, we developed strength-enhanced biomedical patches by coating gelatin onto the nanopatterned surface of polycaprolactone (PCL). The relative contributions of the nanotopographical pattern (physical factor) and gelatin coating (chemical factor) in enhancing the mechanical and adhesive properties of PCL were quantitatively investigated. The nanotopographical pattern increased the surface area of PCL, allowing more gelatin to be coated on its surface. The biomedical patch made from gelatin-coated nanopatterned PCL showed strong mechanical and adhesive properties (tensile strength: ~14.5 MPa; Young's modulus: ~60.2 MPa; and normal and shear adhesive forces: ~1.81 N/cm2 and ~352.3 kPa) as well as good biocompatibility. Although the nanotopographical pattern or gelatin coating alone could enhance these physical properties of PCL in both dry and wet environmental conditions, both factors in combination further strengthened the properties, indicating the importance of synergistic cues in driving the mechanical behavior of biomedical materials. This strength-enhanced biomedical patch will be especially useful for the treatment of tissues such as cartilage, tendon, and bone.


Assuntos
Gelatina , Alicerces Teciduais , Materiais Biocompatíveis , Matriz Extracelular , Poliésteres , Resistência à Tração , Engenharia Tecidual
19.
Sensors (Basel) ; 20(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291510

RESUMO

Flexible tactile sensors are required to maintain conformal contact with target objects and to differentiate different tactile stimuli such as strain and pressure to achieve high sensing performance. However, many existing tactile sensors do not have the ability to distinguish strain from pressure. Moreover, because they lack intrinsic adhesion capability, they require additional adhesive tapes for surface attachment. Herein, we present a self-attachable, pressure-insensitive strain sensor that can firmly adhere to target objects and selectively perceive tensile strain with high sensitivity. The proposed strain sensor is mainly composed of a bioinspired micropillar adhesive layer and a selectively coated active carbon nanotube (CNT) layer. We show that the bioinspired adhesive layer enables strong self-attachment of the sensor to diverse planar and nonplanar surfaces with a maximum adhesion strength of 257 kPa, while the thin film configuration of the patterned CNT layer enables high strain sensitivity (gauge factor (GF) of 2.26) and pressure insensitivity.

20.
Sensors (Basel) ; 20(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756512

RESUMO

A variety of sensor systems have been developed to monitor the structural health status of buildings and infrastructures. However, most sensor systems for structural health monitoring (SHM) are difficult to use in extreme conditions, such as a fire situation, because of their vulnerability to high temperature and physical shocks, as well as time-consuming installation process. Here, we present a smart ball sensor (SBS) that can be immediately installed on surfaces of structures, stably measure vital SHM data in real time and wirelessly transmit the data in a high-temperature fire situation. The smart ball sensor mainly consists of sensor and data transmission module, heat insulator and adhesive module. With the integrated device configuration, the SBS can be strongly attached to the target surface with maximum adhesion force of 233.7-N and stably detect acceleration and temperature of the structure without damaging the key modules of the systems even at high temperatures of up to 500 °C while ensuring wireless transmission of the data. Field tests for a model pre-engineered building (PEB) structure demonstrate the validity of the smart ball sensor as an instantly deployable, high-temperature SHM system. This SBS can be used for SHM of a wider variety of structures and buildings beyond PEB structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...