Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892434

RESUMO

Many different types of nanoparticles have been suggested for tumor-targeted theranosis. However, most systems were prepared through a series of complicated processes and could not even overcome the blood-immune barriers. For the accurate diagnosis and effective treatment of cancers, herein we suggested the lipid micellar structure capturing quantum dot (QD) for cancer theranosis. The QD/lipid micelles (QDMs) were prepared using a simple self-assembly procedure and then conjugated with anti-epidermal growth factor receptor (EGFR) antibodies for tumor targeting. As a therapeutic agent, Bcl2 siRNA-cholesterol conjugates were loaded on the surface of QDMs. The EGFR-directed QDMs containing Bcl2 siRNA, so-called immuno-QDM/siBcl2 (iQDM/siBcl2), exhibited the more effective delivery of QDs and siBcl2 to target human colorectal cancer cells in cultures as well as in mouse xenografts. The effective in vivo targeting of iQDM/siBcl2 resulted in a more enhanced therapeutic efficacy of siBcl2 to the target cancer in mice. Based on the results, anti-EGFR QDM capturing therapeutic siRNA could be suggested as an alternative modality for tumor-targeted theranosis.


Assuntos
Receptores ErbB , Proteínas Proto-Oncogênicas c-bcl-2 , Pontos Quânticos , RNA Interferente Pequeno , Pontos Quânticos/química , Animais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Humanos , RNA Interferente Pequeno/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Camundongos , Linhagem Celular Tumoral , Nanopartículas/química , Lipídeos/química , Nanomedicina Teranóstica/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Micelas
2.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339090

RESUMO

Combining standard surgical procedures with personalized chemotherapy and the continuous monitoring of cancer progression is necessary for effective NSCLC treatment. In this study, we developed liposomal nanoparticles as theranostic agents capable of simultaneous therapy for and imaging of target cancer cells. Copper-64 (64Cu), with a clinically practical half-life (t1/2 = 12.7 h) and decay properties, was selected as the radioisotope for molecular PET imaging. An anti-epidermal growth factor receptor (anti-EGFR) antibody was used to achieve target-specific delivery. Simultaneously, the chemotherapeutic agent doxorubicin (Dox) was encapsulated within the liposomes using a pH-gradient method. The conjugates of 64Cu-labeled and anti-EGFR antibody-conjugated micelles were inserted into the doxorubicin-encapsulating liposomes via a post-insertion procedure (64Cu-Dox-immunoliposomes). We evaluated the size and zeta-potential of the liposomes and analyzed target-specific cell binding and cytotoxicity in EGFR-positive cell lines. Then, we analyzed the specific therapeutic effect and PET imaging of the 64Cu-Dox-immunoliposomes with the A549 xenograft mouse model. In vivo therapeutic experiments on the mouse models demonstrated that the doxorubicin-containing 64Cu-immunoliposomes effectively inhibited tumor growth. Moreover, the 64Cu-immunoliposomes provided superior in vivo PET images of the tumors compared to the untargeted liposomes. We suggest that nanoparticles will be the potential platform for cancer treatment as a widely applicable theranostic system.


Assuntos
Radioisótopos de Cobre , Doxorrubicina , Lipossomos , Neoplasias , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Cobre , Doxorrubicina/uso terapêutico , Doxorrubicina/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Receptores ErbB/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Polietilenoglicóis , Tomografia por Emissão de Pósitrons , Medicina de Precisão
3.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338667

RESUMO

mRNA vaccines have emerged as a pivotal tool in combating COVID-19, offering an advanced approach to immunization. A key challenge with these vaccines is their need for extremely-low-temperature storage, which affects their stability and shelf life. Our research addresses this issue by enhancing the stability of mRNA vaccines through a novel cationic lipid, O,O'-dimyristyl-N-lysyl aspartate (DMKD). DMKD effectively binds with mRNA, improving vaccine stability. We also integrated phosphatidylserine (PS) into the formulation to boost immune response by promoting the uptake of these nanoparticles by immune cells. Our findings reveal that DMKD-PS nanoparticles maintain structural integrity under long-term refrigeration and effectively protect mRNA. When tested, these nanoparticles containing green fluorescent protein (GFP) mRNA outperformed other commercial lipid nanoparticles in protein expression, both in immune cells (RAW 264.7 mouse macrophage) and non-immune cells (CT26 mouse colorectal carcinoma cells). Importantly, in vivo studies show that DMKD-PS nanoparticles are safely eliminated from the body within 48 h. The results suggest that DMKD-PS nanoparticles present a promising alternative for mRNA vaccine delivery, enhancing both the stability and effectiveness of these vaccines.


Assuntos
Lipossomos , Nanopartículas , Vacinas , Animais , Camundongos , RNA Mensageiro/química , Vacinas de mRNA , Transfecção , Células Apresentadoras de Antígenos , Nanopartículas/química
4.
Pharmaceutics ; 15(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36839675

RESUMO

Triple-negative breast cancer (TNBC) cells do not contain various receptors for targeted treatment, a reason behind the poor prognosis of this disease. In this study, biocompatible theranostic erythrocyte-derived nanoparticles (EDNs) were developed and evaluated for effective early diagnosis and treatment of TNBC. The anti-cancer drug, doxorubicin (DOX), was encapsulated into the EDNs and diagnostic quantum dots (QDs) were incorporated into the lipid bilayers of EDNs for tumor bio-imaging. Then, anti-epidermal growth factor receptor (EGFR) antibody molecules were conjugated to the surface of EDNs for TNBC targeting (iEDNs). According to the confocal microscopic analyses and biodistribution assay, iEDNs showed a higher accumulation in EGFR-positive MDA-MB-231 cancers in vitro as well as in vivo, compared to untargeted EDNs. iEDNs containing doxorubicin (iEDNs-DOX) showed a stronger inhibition of target tumor growth than untargeted ones. The resulting anti-EGFR iEDNs exhibited strong biocompatibility, prolonged blood circulation, and efficient targeting of TNBC in mice. Therefore, iEDNs may be used as potential TNBC-targeted co-delivery systems for therapeutics and diagnostics.

5.
Nanotechnol Sci Appl ; 15: 17-31, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35818431

RESUMO

Introduction: Avoiding phagocytic cells and reducing off-target toxicity are the primary hurdles in the clinical application of nanoparticles containing therapeutics. For overcoming these errors, in this study, nanoparticles expressing CD47 proteins inhibiting the phagocytic attack of immune cells were prepared and then evaluated as an anti-cancer drug delivery vehicle. Methods: The CD47+ cell-derived nanoparticles (CDNs) were prepared from the plasma membranes of human embryonic kidney cells transfected with a plasmid encoding CD47. And the doxorubicin (DOX) was loaded into the CDNs, and anti-EGF receptor (EGFR) antibodies were conjugated to the surface of the CDNs to target tumors overexpressing EGFR. Results: The CD47+iCDNs-DOX was successfully synthesized having a stable structure. The CD47+CDNs were taken up less by RAW264.7 macrophages compared to control CDNs. Anti-EGFR CD47+CDNs (iCDNs) selectively recognized EGFR-positive MDA-MB-231 cells in vitro and accumulated more effectively in the target tumor xenografts in mice. Moreover, iCDNs encapsulating doxorubicin (iCDNs-DOX) exhibited the highest suppression of tumor growth in mice, presumably due to the enhanced DOX delivery to tumor tissues, compared to non-targeting CDNs or CD47- iCDNs. Discussion: These results suggest that the clinical application of biocompatible cell membrane-derived nanocarriers could be facilitated by functionalization with macrophage-avoiding CD47 and tumor-targeting antibodies.

6.
Int J Mol Sci ; 21(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371333

RESUMO

In this study, HER2 RNA aptamers were conjugated to mertansine (DM1) and the anti-cancer effectiveness of the conjugate was evaluated in HER2-overexpressing breast cancer models. The conjugate of HER2 aptamer and anticancer drug DM1 (aptamer-drug conjugate, ApDC) was prepared and analyzed using HPLC and mass spectrometry. The cell-binding affinity and cytotoxicity of the conjugate were determined using confocal microscopy and WST-1 assay. The in vivo anti-tumoral efficacy of ApDC was also evaluated in mice carrying BT-474 breast tumors overexpressing HER2. The synthesized HER2-specific RNA aptamers were able to specifically and efficiently bind to HER-positive BT-474 breast cancer cells, but not to HER2-negative MDA-MB-231 breast cancer cells. Also, the HER2-specific ApDC showed strong toxicity to the target cells, BT-474, but not to MDA-MB-231 cells. According to the in vivo analyses drawn from the mouse xenografts of BT-747 tumor, the ApDC was able to more effectively inhibit the tumor growth. Compared to the control group, the mice treated with the ApDC showed a significant reduction of tumor growth. Besides, any significant body weight losses or hepatic toxicities were monitored in the ApDC-treated mice. This research suggests the HER2 aptamer-DM1 conjugate as a target-specific anti-cancer modality and provides experimental evidence supporting its enhanced effectiveness for HER2-overexpressing target tumors. This type of aptamer-conjugated anticancer drug would be utilized as a platform structure for the development of versatile targeted high-performance anticancer drugs by adopting the easy deformability and high affinity of aptamers.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/genética , Animais , Apoptose , Aptâmeros de Nucleotídeos/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptor ErbB-2/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Theranostics ; 9(3): 837-852, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809312

RESUMO

Many aptamers have been evaluated for their ability as drug delivery vehicles to target ligands, and a variety of small interfering RNAs (siRNAs) have been tested for their anti-cancer properties. However, since these two types of molecules have similar physicochemical properties, it has so far been difficult to formulate siRNA-encapsulating carriers guided by aptamers. Here, we propose aptamer-coupled lipid nanocarriers encapsulating quantum dots (QDs) and siRNAs for theragnosis of triple-negative breast cancer (TNBC). Methods: Hydrophobic QDs were effectively incorporated into lipid bilayers, and then therapeutic siRNAs were complexed with QD-lipid nanocarriers (QLs). Finally, anti-EGFR aptamer-lipid conjugates were inserted into the QLs for TNBC targeting (aptamo-QLs). TNBC-targeting aptamo-QLs were directly compared to anti-EGFR antibody-coupled immuno-QLs. The in vitro delivery of therapeutic siRNAs and QDs to target cells was assessed by flow cytometry and confocal microscopy. The in vivo targeting of siRNAs to tumors and their therapeutic efficacy were evaluated in mice carrying MDA-MB-231 tumors. Results: Both types of EGFR-targeting QLs showed enhanced delivery to target cancer cells, resulting in more effective gene silencing and enhanced tumor imaging compared to non-targeting control QLs. Moreover, combinatorial therapy with Bcl-2 and PKC-ι siRNAs loaded into the anti-EGFR QLs was remarkably effective in inhibiting tumor growth and metastasis. Conclusion: In general, the aptamo-QLs showed competitive in vivo delivery and therapeutic efficacy compared to immuno-QLs under the same experimental conditions. Our results show that the anti-EGFR aptamer-guided lipid carriers may be a potential theranostic delivery vehicle for RNA interference and fluorescence imaging of TNBCs.


Assuntos
Antineoplásicos/administração & dosagem , Aptâmeros de Nucleotídeos/metabolismo , Receptores ErbB/metabolismo , Terapia de Alvo Molecular/métodos , RNA Interferente Pequeno/administração & dosagem , Nanomedicina Teranóstica/métodos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/administração & dosagem , Humanos , Lipossomos/administração & dosagem , Camundongos , Transplante de Neoplasias , Imagem Óptica/métodos , Pontos Quânticos/administração & dosagem , Transplante Heterólogo , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/diagnóstico
8.
Nanoscale ; 10(41): 19338-19350, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30307008

RESUMO

Cancer theranosis is an emerging field of personalized medicine which enables individual anti-cancer treatment by monitoring the therapeutic responses of cancer patients. Based on a consideration of the nano-bio interactions related to the blood circulation of systemically administered nanoparticles in humans, as well as extravasation and active targeting, lipid micellar nanoparticles were co-loaded with paclitaxel (PTX) and quantum dots (QDs) to generate a theranostic delivery vehicle. To provide with a tumor-targeting capability, either an antibody or an aptamer against the epidermal growth factor receptor (EGFR) was conjugated to the micelle surface. The QD-containing micelles (QDMs), antibody-coupled QDMs (immuno-QDMs), and aptamer-coupled QDMs (aptamo-QDMs) were able to effectively circulate in blood for at least 8 h when administered intravenously into mice bearing EGFR-positive LS174T tumor xenografts. In vivo fluorescence imaging and a bio-distribution study showed that both the immuno-QDMs and aptamo-QDMs were largely localized in the tumor tissue. The tumor targeting capability enhanced the therapeutic efficacy of PTX for the target cancer cells. Both the immuno-PTX-QDMs and the aptamo-PTX-QDMs caused a stronger inhibition of LS174T tumor growth in mice, compared to the non-targeted PTX-QDMs. These results suggest that the anti-EGFR immuno-PTX-QDMs and anti-EGFR aptamo-PTX-QDMs could be utilized as a tumor-targeted theranostic delivery system for cancer treatment in the clinic.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Micelas , Neoplasias/tratamento farmacológico , Paclitaxel/administração & dosagem , Pontos Quânticos/química , Nanomedicina Teranóstica , Animais , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Antineoplásicos Fitogênicos/química , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Receptores ErbB/química , Receptores ErbB/imunologia , Humanos , Camundongos , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Imagem Óptica , Paclitaxel/química , Distribuição Tecidual , Transplante Heterólogo
9.
Int J Nanomedicine ; 13: 4817-4830, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214190

RESUMO

BACKGROUND: Efficient target-specific siRNA delivery has always been a primary concern in the field of siRNA clinical application. PURPOSE: In this study, four different types of anti-epidermal growth factor receptor (EGFR) antibody-conjugated immunonanoparticles were prepared and tested for cancer cell-targeted therapeutic siRNA delivery. MATERIALS AND METHODS: The prepared nanoparticles encapsulating siRNAs were character-ized by gel retardation and particle analysis using a Zetasizer. In vitro transfection and reduction of target genes, vimentin and JAK3, were determined using quantitative reverse transcription polymerase chain reaction. In vivo tumor targeting and antitumoral efficacies of the nanoparticles were evaluated in mice carrying tumors. RESULTS: Among these immunonanoparticles, anti-EGFR immunolipoplexes and immunoviroplexes exhibited remarkable cell binding and siRNA delivery to EGFR-expressing tumor cells compared to immunoliposomes and immunovirosomes. Especially, the anti-EGFR immunoviroplexes exhibited the most efficient siRNA transfection to target tumor cells. Therefore, antitumoral vimentin and Janus kinase-3 siRNAs were loaded in the anti-EGFR immunolipoplexes and immunoviroplexes, which were tested in mice carrying SK-OV-3 tumor xenografts. In fact, the therapeutic siRNAs were efficiently delivered to the tumor tissues by both delivery vehicles, resulting in significant inhibition of tumor growth. Moreover, administration of doxorubicin in combination with anti-EGFR immunoviroplexes resulted in remarkable and synergistic tumor growth inhibition. CONCLUSION: This study provides experimental proof that cancer cell-targeted immunoviroplexes are an efficient siRNA delivery system for cancer therapy. Moreover, this study also suggests that a combination of conventional chemotherapy and tumor-directed anticancer siRNA therapy would be a better modality for cancer treatment.


Assuntos
Receptores ErbB/imunologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Administração Intravenosa , Animais , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Receptores ErbB/metabolismo , Feminino , Humanos , Janus Quinase 3/metabolismo , Lipossomos/administração & dosagem , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos , Nanopartículas/química , Proteínas de Neoplasias/metabolismo , RNA Interferente Pequeno/genética , Transfecção , Vimentina/metabolismo
10.
Sci Rep ; 7(1): 9474, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28842588

RESUMO

Co-application of fluorescent quantum dot nanocrystals and therapeutics has recently become a promising theranostic methodology for cancer treatment. We developed a tumor-targeted lipid nanocarrier that demonstrates notable efficacy in gene delivery as well as tumor bio-imaging. Coupling of aptamer molecules against the EGF receptor (EGFR) to the distal termini of lipid nanoparticles provided the carrier with tumor-specific recognition capability. The cationic lipid component, referred to as O,O'-dimyristyl-N-lysyl glutamate (DMKE), was able to effectively complex with anionic small-interfering RNA (siRNA). The hydrophobic quantum dots (Q-dots) were effectively incorporated in hydrophobic lipid bilayers at an appropriate Q-dot to lipid ratio. In this study, we optimized the liposomal formula of aptamer-conjugated liposomes containing Q-dots and siRNA molecules (Apt-QLs). The anti-EGFR Apt-QLs exhibited remarkable EGFR-dependent siRNA delivery as well as fluorescence imaging, which were analyzed in cultured cancer cells and tumor xenografts in mice. These results imply that the formulation of Apt-QLs could be widely utilized as a carrier for tumor-directed gene delivery and bio-imaging.


Assuntos
Aptâmeros de Nucleotídeos , Receptores ErbB/metabolismo , Técnicas de Transferência de Genes , Lipídeos/química , Imagem Molecular , Nanopartículas , Neoplasias/diagnóstico por imagem , Pontos Quânticos , Animais , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Xenoenxertos , Humanos , Lipossomos , Camundongos , Microscopia de Fluorescência , Imagem Molecular/métodos , Nanopartículas/química , Neoplasias/metabolismo , Neoplasias/patologia
11.
Int J Oncol ; 49(3): 1130-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27573867

RESUMO

Tumor-directed gene delivery is of major interest in the field of cancer gene therapy. Varied functionalizations of non-viral vectors have been suggested to enhance tumor targetability. In the present study, we prepared two different types of anti-EGF receptor (EGFR) immunonanoparticles containing pDNA, neutrally charged liposomes and cationic lipoplexes, for tumor-directed transfection of cancer therapeutic genes. Even though both anti-EGFR immunonanoparticles had a high binding affinity to the EGFR-positive cancer cells, the anti-EGFR immunolipoplex formulation exhibited approximately 100-fold higher transfection to the target cells than anti-EGFR immunoliposomes. The lipoplex formulation also showed a higher transfection to SK-OV-3 tumor xenografts in mice. Thus, IL12 and/or salmosin genes were loaded in the anti-EGFR immunolipoplexes and intravenously administered to mice carrying SK-OV-3 tumors. Co-transfection of IL12 and salmosin genes using anti-EGFR immunolipoplexes significantly reduced tumor growth and pulmonary metastasis. Furthermore, combinatorial treatment with doxorubicin synergistically inhibited tumor growth. These results suggest that anti-EGFR immunolipoplexes containing pDNA encoding therapeutic genes could be utilized as a gene-transfer modality for cancer gene therapy.


Assuntos
Cetuximab/administração & dosagem , Venenos de Crotalídeos/genética , Imunoconjugados/administração & dosagem , Interleucina-12/genética , Neoplasias Pulmonares/terapia , Melanoma Experimental/terapia , Nanoconjugados/administração & dosagem , Administração Intravenosa , Animais , Linhagem Celular Tumoral , Cetuximab/uso terapêutico , Terapia Combinada , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Lipossomos/administração & dosagem , Neoplasias Pulmonares/secundário , Células MCF-7 , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Gene Med ; 18(7): 112-23, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27191929

RESUMO

BACKGROUND: The effective delivery of therapeutic genes to target cells has been a fundamental goal in cancer gene therapy because of its advantages with respect to both safety and transfection efficiency. In the present, study we describe a tumor-directed gene delivery system that demonstrates remarkable efficacy in gene delivery and minimizes the off-target effects of gene transfection. METHODS: The system consists of a well-verified cationic O,O'-dimyristyl-N-lysyl glutamate (DMKE), Sendai virus fusion (F) protein and hemagglutinin-neuraminidase (HN) protein, referred to as cationic Sendai F/HN virosomes. To achieve tumor-specific recognition, anti-epidermal growth factor (EGF) receptor antibody was coupled to the surface of the virosomes containing interleukin-12 (IL-12) and/or salmosin genes that have potent anti-angiogenetic functions. RESULTS: Among the virosomal formulations, the anti-EGF receptor (EGFR) viroplexes, prepared via complexation of plasmid DNA (pDNA) with cationic DMKE lipid, exhibited more efficient gene transfection to tumor cells over-expressing EGF receptors compared to the neutrally-charged anti-EGFR virosomes encapsulating pDNA. In addition, the anti-EGFR viroplexes with IL-12 and salmosin genes exhibited the most effective therapeutic efficacy in a mouse tumor model. Especially when combined with doxorubicin, transfection of the two genes via the anti-EGFR viroplexes exhibited an enhanced inhibitory effect on tumor growth and metastasis in lungs. CONCLUSIONS: The results of the present study suggest that anti-EGFR viroplexes can be utilized as an effective strategy for tumor-directed gene delivery. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Venenos de Crotalídeos/genética , Receptores ErbB/genética , Interleucina-12/genética , Neoplasias/genética , Vírus Sendai/genética , Células A549 , Animais , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Venenos de Crotalídeos/metabolismo , Doxorrubicina/farmacologia , Receptores ErbB/metabolismo , Terapia Genética/métodos , Proteína HN/genética , Proteína HN/metabolismo , Humanos , Interleucina-12/metabolismo , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/terapia , Vírus Sendai/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Virossomos/genética , Virossomos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
13.
Yonsei Med J ; 54(5): 1149-57, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23918564

RESUMO

PURPOSE: Most chemical transfection reagents are ineffective for the transfection of cells in suspension, such as leukemic cell and stem cell lineages. We developed two different types of viroplexes, cationic Sendai F/HN viroplexes (CSVs) and protamine sulfate-condensed cationic Sendai F/HN viroplexes (PCSVs) for the efficient transfection of T-leukemic cells. MATERIALS AND METHODS: The viroplex systems were prepared by reconstitution of fusogenic Sendai F/HN proteins in DMKE (O,O'-dimyristyl-N-lysyl glutamate) cationic liposomes. The viroplexes were further optimized for plasmid DNA and siRNA delivery to suspension cells. The particle size and surface charge of the viroplexes were analyzed with a ζ-sizer. Transfection of plasmid DNA (pDNA) and small interfering RNA (siRNA) by CSVs or PCSV was evaluated by measurement of transgene expression, confocal microscopy, FACS, and RT-PCR. RESULTS: The optimized CSVs and PCSVs exhibited enhanced gene and siRNA delivery in the tested suspension cell lines (Jurkat cells and CEM cells), compared with conventional cationic liposomes. In the case of pDNA transfection, the CSVs and PCSVs show at least 10-fold and 100-fold higher transgene expression compared with DMKE lipoplexes (or lipofectamine 2000), respectively. The CSVs showed more effective siRNA delivery to the suspension cells than cationic liposomes, as assessed by confocal microscopy, FACS, and RT-PCR. The effective transfection by the CSVs and PCSVs is presumably due to fusogenic activity of F/HN proteins resulting in facilitated internalization of pDNA and siRNA. CONCLUSION: This study suggests that Sendai F/HN viroplexes can be widely applicable for the transfection of pDNA and siRNA to suspension cell lines.


Assuntos
Transfecção/métodos , Linhagem Celular Tumoral , Proteína HN/genética , Humanos , Células Jurkat , RNA Interferente Pequeno , Vírus Sendai/genética , Proteínas Virais de Fusão/genética , Virossomos
14.
Oncol Res ; 21(4): 209-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24762227

RESUMO

Previously, it was reported that the cotransfection of angiostatin K1-3, endostatin, and saxatilin genes using cationic liposomes significantly inhibited tumor progression. IL-12 is a well-known immune modulator that promotes Th1-type antitumor immune responses and also induces antiangiogenic effects. In this study, we have examined the antitumoral function of the IL-12 gene cotransfected with antiangiogenic genes for angiostatin K1-3, endostatin, and saxatilin by O,O'-dimyristyl-N-lysyl glutamate (DMKE) cationic liposomes in a mouse tumor model. According to our results, the administration of the IL-12 gene or the genes for angiostatin K1-3, endostatin, and saxatilin exhibited effective inhibition of B16BL6 melanoma growth in mice. In particular, intravenous administration of the IL-12 gene along with intratumoral administration of the three antiangiogenic genes synergistically inhibited the B16BL6 tumor growth. These results suggest that systemically expressed IL-12 enhances antitumoral efficacy of locally expressed antiangiogenic proteins.


Assuntos
Angiostatinas/genética , Desintegrinas/genética , Endostatinas/genética , Interleucina-12/genética , Melanoma Experimental/terapia , Angiostatinas/biossíntese , Animais , Processos de Crescimento Celular/genética , DNA/administração & dosagem , DNA/química , DNA/genética , Dipeptídeos/administração & dosagem , Dipeptídeos/química , Desintegrinas/biossíntese , Endostatinas/biossíntese , Feminino , Expressão Gênica , Terapia Genética/métodos , Interleucina-12/biossíntese , Lipossomos/administração & dosagem , Lipossomos/química , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/administração & dosagem , Plasmídeos/química , Plasmídeos/genética , Transfecção/métodos
15.
Artigo em Coreano | WPRIM (Pacífico Ocidental) | ID: wpr-644669

RESUMO

PURPOSE: The purpose of this study was to compare the effects of preventing CAUTIs through the practice of using 0.05% chlorhexidine gluconate (CHG) versus normal saline for perineal care in ICU patients. METHODS: A randomized controlled trial was used, and participants were randomly allocated to either the CHG group (n=79) or normal saline group (n=81). CAUTI was diagnosed following the criteria of the Centers of Disease Control and Prevention (CDC). Incidence of CAUTI and characte oftics of infection were evaluated. RESULTS: In the CHG group, 8 epofodes of CAUTI were obsevend in 79 patients and 875 foley catheter e ys. Tnce ate of CAUTI was 9.14 per 1,000 foley catheter e ys. Tncre were 2 epofodes of CAUTI in the 81 patients and 837 foley catheter e ys of the normal saline group. Tnce ate of CAUTI was 2.39 per 1,000 foley catheter e ys. Tnc difference between both groups was not significant (p=.1). CONCLUSION: Using normal saline to provide perineal care to ICU patients with a foley catheter inserted will not increase the risk for CAUTI.


Assuntos
Humanos , Cateterismo , Catéteres , Clorexidina , Incidência , Controle de Infecções , Cuidados Críticos , Unidades de Terapia Intensiva , Sistema Urinário , Infecções Urinárias
16.
Mol Cells ; 29(5): 457-62, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20396968

RESUMO

Targeted mRNA degradation by short interfering RNAs (siRNAs) offers a great potential to treat cancers. siRNA therapeutics for leukemias are, however, hindered by poor intracellular uptake, limited blood stability and nonspecific delivery. To solve these problems, we developed an anti-JL1 immunonanoplex (antibody-coupled nanocomplex) for siRNA delivery using anti-JL1 minibody (leukemia cell-specific minibody) conjugated to oligo-9-Arg peptide (9R) for effective siRNA delivery to leukemic cells. The anti-JL1 immunonanoplexes were able to deliver siRNA specifically to leukemic cells (CEM and Jurkat), but not to control cancer cells (H9). According to FACS and confocal microscopic analysis, siRNAs delivered by immunonanoplex particles were rapidly taken up by the JL1-positive cancer cells in 2 h. Furthermore, we showed that the anti-JL1 immunonanoplexes were effectively targeted to JL1-positive cells (CEM) inoculated in the mouse bone marrow. These results suggest that the anti-JL1 immunonanoplex is a powerful siRNA delivery system for human leukemia therapies.


Assuntos
Anticorpos Monoclonais/metabolismo , Leucemia de Células T/genética , Fragmentos de Peptídeos/metabolismo , RNA Interferente Pequeno/genética , Proteínas Recombinantes de Fusão/farmacologia , Animais , Anticorpos Monoclonais/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Feminino , Terapia Genética , Humanos , Células Jurkat , Leucemia de Células T/imunologia , Leucemia de Células T/metabolismo , Leucemia de Células T/terapia , Camundongos , Camundongos SCID , Microscopia Confocal , Transplante de Neoplasias , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...