Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 176: 116781, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805966

RESUMO

Influenza A virus causes numerous deaths and infections worldwide annually. Therefore, we have considered nanobodies as a potential treatment for patients with severe cases of influenza. We developed a nanobody that was expected to have protective efficacy against the A/California/04/2009 (CA/04; pandemic 2009 flu strain) and evaluated its therapeutic efficacy against CA/04 in mice experiments. This nanobody was derived from the immunization of the alpaca, and the inactivated CA/04 virus was used as an immunogen. We successfully generated a nanobody library through bio-panning, phage ELISA, and Bio-layer interferometry. Moreover, we confirmed that administering nanobodies after lethal doses of CA/04 reduced viral replication in the lungs and influenza-induced clinical signs in mice. These research findings will help to develop nanobodies as viral therapeutics for CA/04 and other infectious viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , Anticorpos de Domínio Único , Animais , Anticorpos de Domínio Único/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Feminino , Camundongos Endogâmicos BALB C , Camelídeos Americanos/imunologia , Pulmão/imunologia , Pulmão/virologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Anticorpos Antivirais/imunologia , Replicação Viral/efeitos dos fármacos
2.
ACS Nano ; 18(6): 4847-4861, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38189789

RESUMO

Infectious diseases pose persistent threats to public health, demanding advanced vaccine technologies. Nanomaterial-based delivery systems offer promising solutions to enhance immunogenicity while minimizing reactogenicity. We introduce a self-assembled vaccine (SAV) platform employing antigen-polymer conjugates designed to facilitate robust immune responses. The SAVs exhibit efficient cellular uptake by dendritic cells (DCs) and macrophages, which are crucial players in the innate immune system. The high-density antigen presentation of this SAV platform enhances the affinity for DCs through multivalent recognition, significantly augmenting humoral immunity. SAV induced high levels of immunoglobulin G (IgG), IgG1, and IgG2a, suggesting that mature DCs efficiently induced B cell activation through multivalent antigen recognition. Universality was confirmed by applying it to respiratory viruses, showcasing its potential as a versatile vaccine platform. Furthermore, we have also demonstrated strong protection against influenza A virus infection with SAV containing hemagglutinin, which is used in influenza A virus subunit vaccines. The efficacy and adaptability of this nanostructured vaccine present potential utility in combating infectious diseases.


Assuntos
Doenças Transmissíveis , Vírus da Influenza A , Vacinas contra Influenza , Nanoestruturas , Humanos , Antígenos , Imunidade Humoral , Imunoglobulina G , Anticorpos Antivirais , Adjuvantes Imunológicos
3.
J Mater Chem B ; 8(26): 5620-5626, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32538414

RESUMO

Cellular uptake of antigens (Ags) by antigen-presenting cells (APCs) is vital for effective functioning of the immune system. Intramuscular or subcutaneous administration of vaccine Ags alone is not sufficient to elicit optimal immune responses. Thus, adjuvants are required to induce strong immunogenicity. Here, we developed nanoparticulate adjuvants that assemble into a bilayer spherical polymersome (PSome) to promote the cellular uptake of Ags by APCs. PSomes were synthesized by using a biodegradable and biocompatible block copolymer methoxy-poly(ethylene glycol)-b-poly(d,l-lactide) to encapsulate both hydrophilic and lipophilic biomacromolecules, such as ovalbumin (OVA) as a model Ag and monophosphoryl lipid A (MPLA) as an immunostimulant. After co-encapsulation of OVA and MPLA, the PSome synthetic vehicle exhibited the sustained release of OVA in cell environments and allowed efficient delivery of cargos into APCs. The administration of PSomes loaded with OVA and MPLA induced the production of interleukin-6 and tumor necrosis factor-alpha cytokines by macrophage activation in vitro and elicited effective Ag-specific antibody responses in vivo. These findings indicate that the nano-sized PSome may serve as a potent adjuvant for vaccine delivery systems to modulate enhanced immune responses.


Assuntos
Células Apresentadoras de Antígenos/química , Lipídeo A/análogos & derivados , Nanopartículas/química , Ovalbumina/química , Polímeros/química , Animais , Reações Antígeno-Anticorpo , Células Apresentadoras de Antígenos/imunologia , Feminino , Lipídeo A/química , Lipídeo A/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Ovalbumina/imunologia , Tamanho da Partícula , Polímeros/síntese química , Células RAW 264.7 , Propriedades de Superfície
4.
Adv Healthc Mater ; 8(2): e1800953, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30549426

RESUMO

Powerful adjuvants to augment vaccine efficacy with a less immunogenic vaccine system are in great demand. In this study, a novel squalene-based cationic poly(amino acid) adjuvant (CASq) that elicits both cellular (Th1) and humoral (Th2) immune responses is developed. CASq is demonstrated to promote cellular uptake of viral antigen and stimulate macrophages, leading to active production of interleukin-12. Furthermore, co-administration of inactivated pdm H1N1 vaccine with CASq significantly increases the generation of antigen-specific antibodies and T cell immune responses in mice, as well as resulting in complete prevention of disease symptoms and protection against lethal infection.


Assuntos
Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Polímeros/química , Animais , Citocinas/metabolismo , Imunidade Celular , Imunidade Humoral , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/farmacologia , Lisina/química , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Infecções por Orthomyxoviridae/prevenção & controle , Fenilalanina/química , Polímeros/farmacologia , Células RAW 264.7 , Esqualeno/química , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/farmacologia
5.
Adv Funct Mater ; 28(34): 1800960, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32313543

RESUMO

Highly pathogenic avian influenza virus (HPAIV) infections have occurred continuously and crossed the species barrier to humans, leading to fatalities. A polymerase chain reaction based molecular test is currently the most sensitive diagnostic tool for HPAIV; however, the results must be analyzed in centralized diagnosis systems by a trained individual. This requirement leads to delays in quarantine and isolation. To control the spread of HPAIV, rapid and accurate diagnostics suitable for field testing are needed, and the tests must facilitate a differential diagnosis between HPAIV and low pathogenic avian influenza virus (LPAIV), which undergo cleavage specifically by trypsin- or furin-like proteases, respectively. In this study, a differential avian influenza virus rapid test kit is developed and evaluated in vitro and using clinical specimens from HPAIV H5N1-infected animals. It is demonstrated that this rapid test kit provides highly sensitive and specific detection of HPAIV and LPAIV and is thus a useful field diagnostic tool for H5N1 HPAIV outbreaks and for rapid quarantine control of the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA