Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Rev Biomed Eng ; 26(1): 331-355, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38959390

RESUMO

Recent advancements in soft electronic skin (e-skin) have led to the development of human-like devices that reproduce the skin's functions and physical attributes. These devices are being explored for applications in robotic prostheses as well as for collecting biopotentials for disease diagnosis and treatment, as exemplified by biomedical e-skins. More recently, machine learning (ML) has been utilized to enhance device control accuracy and data processing efficiency. The convergence of e-skin technologies with ML is promoting their translation into clinical practice, especially in healthcare. This review highlights the latest developments in ML-reinforced e-skin devices for robotic prostheses and biomedical instrumentations. We first describe technological breakthroughs in state-of-the-art e-skin devices, emphasizing technologies that achieve skin-like properties. We then introduce ML methods adopted for control optimization and pattern recognition, followed by practical applications that converge the two technologies. Lastly, we briefly discuss the challenges this interdisciplinary research encounters in its clinical and industrial transition.


Assuntos
Aprendizado de Máquina , Robótica , Dispositivos Eletrônicos Vestíveis , Humanos , Robótica/métodos , Pele , Desenho de Equipamento , Engenharia Biomédica/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38885105

RESUMO

Cough is an important symptom in children with acute and chronic respiratory disease. Daily cough is common in Cystic Fibrosis (CF) and increased cough is a symptom of pulmonary exacerbation. To date, cough assessment is primarily subjective in clinical practice and research. Attempts to develop objective, automatic cough counting tools have faced reliability issues in noisy environments and practical barriers limiting long-term use. This single-center pilot study evaluated usability, acceptability and performance of a mechanoacoustic sensor (MAS), previously used for cough classification in adults, in 36 children with CF over brief and multi-day periods in four cohorts. Children whose health was at baseline and who had symptoms of pulmonary exacerbation were included. We trained, validated, and deployed custom deep learning algorithms for accurate cough detection and classification from other vocalization or artifacts with an overall area under the receiver-operator characteristic curve (AUROC) of 0.96 and average precision (AP) of 0.93. Child and parent feedback led to a redesign of the MAS towards a smaller, more discreet device acceptable for daily use in children. Additional improvements optimized power efficiency and data management. The MAS's ability to objectively measure cough and other physiologic signals across clinic, hospital, and home settings is demonstrated, particularly aided by an AUROC of 0.97 and AP of 0.96 for motion artifact rejection. Examples of cough frequency and physiologic parameter correlations with participant-reported outcomes and clinical measurements for individual patients are presented. The MAS is a promising tool in objective longitudinal evaluation of cough in children with CF.

3.
Proc Natl Acad Sci U S A ; 121(22): e2404007121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768347

RESUMO

Sensations of heat and touch produced by receptors in the skin are of essential importance for perceptions of the physical environment, with a particularly powerful role in interpersonal interactions. Advances in technologies for replicating these sensations in a programmable manner have the potential not only to enhance virtual/augmented reality environments but they also hold promise in medical applications for individuals with amputations or impaired sensory function. Engineering challenges are in achieving interfaces with precise spatial resolution, power-efficient operation, wide dynamic range, and fast temporal responses in both thermal and in physical modulation, with forms that can extend over large regions of the body. This paper introduces a wireless, skin-compatible interface for thermo-haptic modulation designed to address some of these challenges, with the ability to deliver programmable patterns of enhanced vibrational displacement and high-speed thermal stimulation. Experimental and computational investigations quantify the thermal and mechanical efficiency of a vertically stacked design layout in the thermo-haptic stimulators that also supports real-time, closed-loop control mechanisms. The platform is effective in conveying thermal and physical information through the skin, as demonstrated in the control of robotic prosthetics and in interactions with pressure/temperature-sensitive touch displays.


Assuntos
Tato , Realidade Virtual , Tecnologia sem Fio , Humanos , Tecnologia sem Fio/instrumentação , Tato/fisiologia , Pele , Robótica/instrumentação , Robótica/métodos
4.
Digit Biomark ; 8(1): 40-51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606345

RESUMO

Introduction: Cervical spine disease is a leading cause of pain and disability. Degenerative conditions of the spine can result in neurologic compression of the cervical spinal cord or nerve roots and may be surgically treated with an anterior cervical discectomy and fusion (ACDF) in up to 137,000 people per year in the United States. A common sequelae of ACDF is reduced cervical range of motion (CROM) with patient-based complaints of stiffness and neck pain. Currently, tools for assessment of CROM are manual, subjective, and only intermittently utilized during doctor or physical therapy visits. We propose a skin-mountable acousto-mechanic sensor (ADvanced Acousto-Mechanic sensor; ADAM) as a tool for continuous neck motion monitoring in postoperative ACDF patients. We have developed and validated a machine learning neck motion classification algorithm to differentiate between eight neck motions (right/left rotation, right/left lateral bending, flexion, extension, retraction, protraction) in healthy normal subjects and patients. Methods: Sensor data from 12 healthy normal subjects and 5 patients were used to develop and validate a Convolutional Neural Network (CNN). Results: An average algorithm accuracy of 80.0 ± 3.8% was obtained for healthy normal subjects (94% for right rotation, 98% for left rotation, 65% for right lateral bending, 87% for left lateral bending, 89% for flexion, 77% for extension, 50% for retraction, 84% for protraction). An average accuracy of 67.5 ± 5.8% was obtained for patients. Discussion: ADAM, with our algorithm, may serve as a rehabilitation tool for neck motion monitoring in postoperative ACDF patients. Sensor-captured vital signs and other events (extubation, vocalization, physical therapy, walking) are potential metrics to be incorporated into our algorithm to offer more holistic monitoring of patients after cervical spine surgery.

6.
Chem Rev ; 124(6): 3220-3283, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38465831

RESUMO

The human body continuously emits physiological and psychological information from head to toe. Wearable electronics capable of noninvasively and accurately digitizing this information without compromising user comfort or mobility have the potential to revolutionize telemedicine, mobile health, and both human-machine or human-metaverse interactions. However, state-of-the-art wearable electronics face limitations regarding wearability and functionality due to the mechanical incompatibility between conventional rigid, planar electronics and soft, curvy human skin surfaces. E-Tattoos, a unique type of wearable electronics, are defined by their ultrathin and skin-soft characteristics, which enable noninvasive and comfortable lamination on human skin surfaces without causing obstruction or even mechanical perception. This review article offers an exhaustive exploration of e-tattoos, accounting for their materials, structures, manufacturing processes, properties, functionalities, applications, and remaining challenges. We begin by summarizing the properties of human skin and their effects on signal transmission across the e-tattoo-skin interface. Following this is a discussion of the materials, structural designs, manufacturing, and skin attachment processes of e-tattoos. We classify e-tattoo functionalities into electrical, mechanical, optical, thermal, and chemical sensing, as well as wound healing and other treatments. After discussing energy harvesting and storage capabilities, we outline strategies for the system integration of wireless e-tattoos. In the end, we offer personal perspectives on the remaining challenges and future opportunities in the field.


Assuntos
Tatuagem , Dispositivos Eletrônicos Vestíveis , Humanos , Eletrônica
7.
Adv Healthc Mater ; 13(5): e2302797, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37983897

RESUMO

Chronic wounds represent a major health risk for diabetic patients. Regeneration of such wounds requires regular medical treatments over periods that can extend for several months or more. Schemes for monitoring the healing process can provide important feedback to the patient and caregiver. Although qualitative indicators such as malodor or fever can provide some indirect information, quantitative measurements of the wound bed have the potential to yield important insights. The work presented here introduces materials and engineering designs for a wireless system that captures spatio-temporal temperature and thermal transport information across the wound continuously throughout the healing process. Systematic experimental and computational studies establish the materials aspects and basic capabilities of this technology. In vivo studies reveal that both the temperature and the changes in this quantity offer information on wound status, with indications of initial exothermic reactions and mechanisms of scar tissue formation. Bioresorbable materials serve as the foundations for versions of this device that create possibilities for monitoring on and within the wound site, in a way that bypasses the risks of physical removal.


Assuntos
Cicatriz , Cicatrização , Humanos , Temperatura , Desenho de Equipamento
8.
Nat Med ; 29(12): 3137-3148, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973946

RESUMO

The human body generates various forms of subtle, broadband acousto-mechanical signals that contain information on cardiorespiratory and gastrointestinal health with potential application for continuous physiological monitoring. Existing device options, ranging from digital stethoscopes to inertial measurement units, offer useful capabilities but have disadvantages such as restricted measurement locations that prevent continuous, longitudinal tracking and that constrain their use to controlled environments. Here we present a wireless, broadband acousto-mechanical sensing network that circumvents these limitations and provides information on processes including slow movements within the body, digestive activity, respiratory sounds and cardiac cycles, all with clinical grade accuracy and independent of artifacts from ambient sounds. This system can also perform spatiotemporal mapping of the dynamics of gastrointestinal processes and airflow into and out of the lungs. To demonstrate the capabilities of this system we used it to monitor constrained respiratory airflow and intestinal motility in neonates in the neonatal intensive care unit (n = 15), and to assess regional lung function in patients undergoing thoracic surgery (n = 55). This broadband acousto-mechanical sensing system holds the potential to help mitigate cardiorespiratory instability and manage disease progression in patients through continuous monitoring of physiological signals, in both the clinical and nonclinical setting.


Assuntos
Unidades de Terapia Intensiva Neonatal , Recém-Nascido , Humanos , Monitorização Fisiológica
9.
Food Sci Biotechnol ; 32(14): 2013-2023, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37860744

RESUMO

Aged rice (AR) was mildly heated in aqueous dispersions containing different amounts of xanthan gum (Xan) at 60 °C for 1 h, and then dried in a humidity chamber (50 °C, 80% RH) for 12 h. The AR kernels treated without Xan showed a coarse surface with many pores after cooking, whereas the same rice treated with Xan showed a smooth and uniform surface. Prior to the treatment, the cooked AR was harder and less sticky than the cooked fresh rice (FR). The hydrothermal treatment softened the cooked AR although did not change its adhesiveness. The same treatment in the presence of Xan could increase the adhesiveness of AR, making the textural characteristics of AR similar to those of FR. Sensory evaluation revealed that the mild heat treatment in the presence of Xan restored the eating quality and acceptability of cooked AR which had been lost by aging. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01306-0.

10.
Biosens Bioelectron ; 237: 115545, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517336

RESUMO

Temperature is the most commonly collected vital sign in all of clinical medicine; it plays a critical role in care decisions related to topics ranging from infection to inflammation, sleep, and fertility. Most assessments of body temperature occur at isolated anatomical locations (e.g. axilla, rectum, temporal artery, or oral cavity). Even this relatively primitive mode for monitoring can be challenging with vulnerable patient populations due to physical encumbrances and artifacts associated with the sizes, weights, shapes and mechanical properties of the sensors and, for continuous monitoring, their hard-wired interfaces to data collection units. Here, we introduce a simple, miniaturized, lightweight sensor as a wireless alternative, designed to address demanding applications such as those related to the care of neonates in high ambient humidity environments with radiant heating found in incubators in intensive care units. Such devices can be deployed onto specific anatomical locations of premature infants for homeostatic assessments. The estimated core body temperature aligns, to within 0.05 °C, with clinical grade, wired sensors, consistent with regulatory medical device requirements. Time-synchronized, multi-device operation across multiple body locations supports continuous, full-body measurements of spatio-temporal variations in temperature and additional modes of determining tissue health status in the context of sepsis detection and various environmental exposures. In addition to thermal sensing, these same devices support measurements of a range of other essential vital signs derived from thermo-mechanical coupling to the skin, for applications ranging from neonatal and infant care to sleep medicine and even pulmonary medicine.

11.
Proc Natl Acad Sci U S A ; 120(9): e2219394120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802437

RESUMO

Vocal fatigue is a measurable form of performance fatigue resulting from overuse of the voice and is characterized by negative vocal adaptation. Vocal dose refers to cumulative exposure of the vocal fold tissue to vibration. Professionals with high vocal demands, such as singers and teachers, are especially prone to vocal fatigue. Failure to adjust habits can lead to compensatory lapses in vocal technique and an increased risk of vocal fold injury. Quantifying and recording vocal dose to inform individuals about potential overuse is an important step toward mitigating vocal fatigue. Previous work establishes vocal dosimetry methods, that is, processes to quantify vocal fold vibration dose but with bulky, wired devices that are not amenable to continuous use during natural daily activities; these previously reported systems also provide limited mechanisms for real-time user feedback. This study introduces a soft, wireless, skin-conformal technology that gently mounts on the upper chest to capture vibratory responses associated with vocalization in a manner that is immune to ambient noises. Pairing with a separate, wirelessly linked device supports haptic feedback to the user based on quantitative thresholds in vocal usage. A machine learning-based approach enables precise vocal dosimetry from the recorded data, to support personalized, real-time quantitation and feedback. These systems have strong potential to guide healthy behaviors in vocal use.


Assuntos
Canto , Distúrbios da Voz , Voz , Humanos , Retroalimentação , Distúrbios da Voz/etiologia , Voz/fisiologia , Prega Vocal/fisiologia
12.
Nat Commun ; 14(1): 1024, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823288

RESUMO

Soft, wireless physiological sensors that gently adhere to the skin are capable of continuous clinical-grade health monitoring in hospital and/or home settings, of particular value to critically ill infants and other vulnerable patients, but they present risks for injury upon thermal failure. This paper introduces an active materials approach that automatically minimizes such risks, to complement traditional schemes that rely on integrated sensors and electronic control circuits. The strategy exploits thin, flexible bladders that contain small volumes of liquid with boiling points a few degrees above body temperature. When the heat exceeds the safe range, vaporization rapidly forms highly effective, thermally insulating structures and delaminates the device from the skin, thereby eliminating any danger to the skin. Experimental and computational thermomechanical studies and demonstrations in a skin-interfaced mechano-acoustic sensor illustrate the effectiveness of this simple thermal safety system and suggest its applicability to nearly any class of skin-integrated device technology.


Assuntos
Eletrônica , Pele , Humanos , Pele/química , Temperatura Corporal , Temperatura Alta , Software
14.
Food Res Int ; 162(Pt A): 111980, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461292

RESUMO

This study investigated leachate and morphological properties of electric-cooked rice (ECR), electric pressure-cooked rice (EPCR), and instant cooked rice (ICR) to explore the effects of cooking methods on eating quality of cooked rice. The leachate was obtained by rinsing cooked rice with warm water. EPCR had the highest amounts of total solid and amylopectin in the leachate and the highest contents of surface and bound lipid. The amylopectin branch chain length of leachate was not significantly different among rice samples. EPCR leachate solution showed the highest apparent viscosity and the greatest decline with increasing shear rate due to high amount of amylopectin. In morphological characteristics, degrees for disruption of the starch structure and compression of protein present in rice kernel were largest in EPCR. Textural hardness of ICR was much lower than that of ECR or EPCR. EPCR had the highest glossiness, stickiness, moistness, and overall acceptability scores. Principal component analysis score plot showed significant differences in leachate and textural characteristics of cooked rice according to cooking methods.


Assuntos
Oryza , Amido , Amilopectina , Receptor de Proteína C Endotelial , Culinária
15.
Proc Natl Acad Sci U S A ; 119(46): e2214164119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343234

RESUMO

A quantitative understanding of the coupled dynamics of flow and particles in aerosol and droplet transmission associated with speech remains elusive. Here, we summarize an effort that integrates insights into flow-particle dynamics induced by the production plosive sounds during speech with skin-integrated electronic systems for monitoring the production of these sounds. In particular, we uncover diffusive and ballistic regimes separated by a threshold particle size and characterize the Lagrangian acceleration and pair dispersion. Lagrangian dynamics of the particles in the diffusive regime exhibit features of isotropic turbulence. These fundamental findings highlight the value in skin-interfaced wireless sensors for continuously measuring critical speech patterns in clinical settings, work environments, and the home, based on unique neck biomechanics associated with the generation of plosive sounds. We introduce a wireless, soft device that captures these motions to enable detection of plosive sounds in multiple languages through a convolutional neural network approach. This work spans fundamental flow-particle physics to soft electronic technology, with implications in monitoring and studying critical speech patterns associated with aerosol and droplet transmissions relevant to the spread of infectious diseases.


Assuntos
Eletrônica , Fala , Aerossóis , Tamanho da Partícula , Movimento (Física)
16.
NPJ Digit Med ; 5(1): 147, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36123384

RESUMO

Swallowing is a complex neuromuscular activity regulated by the autonomic nervous system. Millions of adults suffer from dysphagia (impaired or difficulty swallowing), including patients with neurological disorders, head and neck cancer, gastrointestinal diseases, and respiratory disorders. Therapeutic treatments for dysphagia include interventions by speech-language pathologists designed to improve the physiology of the swallowing mechanism by training patients to initiate swallows with sufficient frequency and during the expiratory phase of the breathing cycle. These therapeutic treatments require bulky, expensive equipment to synchronously record swallows and respirations, confined to use in clinical settings. This paper introduces a wireless, wearable technology that enables continuous, mechanoacoustic tracking of respiratory activities and swallows through movements and vibratory processes monitored at the skin surface. Validation studies in healthy adults (n = 67) and patients with dysphagia (n = 4) establish measurement equivalency to existing clinical standard equipment. Additional studies using a differential mode of operation reveal similar performance even during routine daily activities and vigorous exercise. A graphical user interface with real-time data analytics and a separate, optional wireless module support both visual and haptic forms of feedback to facilitate the treatment of patients with dysphagia.

17.
Sci Adv ; 8(23): eabo0537, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35687686

RESUMO

Continuous health monitoring is essential for clinical care, especially for patients in neonatal and pediatric intensive care units. Monitoring currently requires wired biosensors affixed to the skin with strong adhesives that can cause irritation and iatrogenic injuries during removal. Emerging wireless alternatives are attractive, but requirements for skin adhesives remain. Here, we present a materials strategy enabling wirelessly triggered reductions in adhesive strength to eliminate the possibility for injury during removal. The materials involve silicone composites loaded with crystallizable oils with melting temperatures close to, but above, surface body temperature. This solid/liquid phase transition occurs upon heating, reducing the adhesion at the skin interface by more than 75%. Experimental and computational studies reveal insights into effects of oil mixed randomly and patterned deterministically into the composite. Demonstrations in skin-integrated sensors that include wirelessly controlled heating and adhesion reduction illustrate the broad utility of these ideas in clinical-grade health monitoring.

18.
Science ; 376(6596): 1006-1012, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35617386

RESUMO

Temporary postoperative cardiac pacing requires devices with percutaneous leads and external wired power and control systems. This hardware introduces risks for infection, limitations on patient mobility, and requirements for surgical extraction procedures. Bioresorbable pacemakers mitigate some of these disadvantages, but they demand pairing with external, wired systems and secondary mechanisms for control. We present a transient closed-loop system that combines a time-synchronized, wireless network of skin-integrated devices with an advanced bioresorbable pacemaker to control cardiac rhythms, track cardiopulmonary status, provide multihaptic feedback, and enable transient operation with minimal patient burden. The result provides a range of autonomous, rate-adaptive cardiac pacing capabilities, as demonstrated in rat, canine, and human heart studies. This work establishes an engineering framework for closed-loop temporary electrotherapy using wirelessly linked, body-integrated bioelectronic devices.


Assuntos
Implantes Absorvíveis , Estimulação Cardíaca Artificial , Marca-Passo Artificial , Cuidados Pós-Operatórios , Tecnologia sem Fio , Animais , Cães , Frequência Cardíaca , Humanos , Cuidados Pós-Operatórios/instrumentação , Ratos
20.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34663725

RESUMO

Early identification of atypical infant movement behaviors consistent with underlying neuromotor pathologies can expedite timely enrollment in therapeutic interventions that exploit inherent neuroplasticity to promote recovery. Traditional neuromotor assessments rely on qualitative evaluations performed by specially trained personnel, mostly available in tertiary medical centers or specialized facilities. Such approaches are high in cost, require geographic proximity to advanced healthcare resources, and yield mostly qualitative insight. This paper introduces a simple, low-cost alternative in the form of a technology customized for quantitatively capturing continuous, full-body kinematics of infants during free living conditions at home or in clinical settings while simultaneously recording essential vital signs data. The system consists of a wireless network of small, flexible inertial sensors placed at strategic locations across the body and operated in a wide-bandwidth and time-synchronized fashion. The data serve as the basis for reconstructing three-dimensional motions in avatar form without the need for video recordings and associated privacy concerns, for remote visual assessments by experts. These quantitative measurements can also be presented in graphical format and analyzed with machine-learning techniques, with potential to automate and systematize traditional motor assessments. Clinical implementations with infants at low and at elevated risks for atypical neuromotor development illustrates application of this system in quantitative and semiquantitative assessments of patterns of gross motor skills, along with body temperature, heart rate, and respiratory rate, from long-term and follow-up measurements over a 3-mo period following birth. The engineering aspects are compatible for scaled deployment, with the potential to improve health outcomes for children worldwide via early, pragmatic detection methods.


Assuntos
Comportamento do Lactente/fisiologia , Monitorização Fisiológica/instrumentação , Movimento/fisiologia , Sinais Vitais/fisiologia , Tecnologia sem Fio/instrumentação , Viés , Criança , Desenho de Equipamento , Frequência Cardíaca , Humanos , Imageamento Tridimensional , Lactente , Miniaturização , Monitorização Fisiológica/estatística & dados numéricos , Taxa Respiratória , Pele , Gravação em Vídeo , Tecnologia sem Fio/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...