Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(25): e2401782, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38654698

RESUMO

Water electrolyzers powered by renewable energy are emerging as clean and sustainable technology for producing hydrogen without carbon emissions. Specifically, anion exchange membrane (AEM) electrolyzers utilizing non-platinum group metal (non-PGM) catalysts have garnered attention as a cost-effective method for hydrogen production, especially when integrated with solar cells. Nonetheless, the progress of such integrated systems is hindered by inadequate water electrolysis efficiency, primarily caused by poor oxygen evolution reaction (OER) electrodes. To address this issue, a NiFeCo─OOH has developed as an OER electrocatalyst and successfully demonstrated its efficacy in an AEM electrolyzer, which is powered by renewable electricity and integrated with a silicon solar cell.

2.
Small Methods ; : e2400284, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651527

RESUMO

Perovskite materials that aren't stable during the oxygen evolution reaction (OER) are unsuitable for anion-exchange membrane water electrolyzers (AEMWE). But through manipulating their electronic structures, their performance can further increase. Among the first-row transition metals, nickel and iron are widely recognized as prominent electrocatalysts; thus, the researchers are looking into how combining them can improve the OER. Recent research has actively explored the design and study of heterostructures in this field, showcasing the dynamic exploration of innovative catalyst configurations. In this study, a heterostructure is used to manipulate the electronic structure of LaNiO3 (LNO) to improve both OER properties and durability. Through adsorbing iron onto the LNO (LNO@Fe) as γ iron oxyhydroxide (γ-FeOOH), the binding energy of nickel in the LNO exhibited negative shifts, inferring nickel movement toward the metallic state. Consequently, the electrochemical properties of LNO@Fe are further improved. LNO@Fe showed excellent performance (1.98 A cm-2, 1 m KOH, 50 °C at 1.85 V) with 84.1% cell efficiency in AEMWE single cells, demonstrating great improvement relative to LNO. The degradation for the 850 h durability analysis of LNO@Fe is ≈68 mV kh-1, which is ≈58 times less than that of LNO.

3.
Cancers (Basel) ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35565352

RESUMO

Microscopic image-based analysis has been intensively performed for pathological studies and diagnosis of diseases. However, mis-authentication of cell lines due to misjudgments by pathologists has been recognized as a serious problem. To address this problem, we propose a deep-learning-based approach for the automatic taxonomy of cancer cell types. A total of 889 bright-field microscopic images of four cancer cell lines were acquired using a benchtop microscope. Individual cells were further segmented and augmented to increase the image dataset. Afterward, deep transfer learning was adopted to accelerate the classification of cancer types. Experiments revealed that the deep-learning-based methods outperformed traditional machine-learning-based methods. Moreover, the Wilcoxon signed-rank test showed that deep ensemble approaches outperformed individual deep-learning-based models (p < 0.001) and were in effect to achieve the classification accuracy up to 97.735%. Additional investigation with the Wilcoxon signed-rank test was conducted to consider various network design choices, such as the type of optimizer, type of learning rate scheduler, degree of fine-tuning, and use of data augmentation. Finally, it was found that the using data augmentation and updating all the weights of a network during fine-tuning improve the overall performance of individual convolutional neural network models.

4.
Front Chem ; 8: 600908, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344420

RESUMO

Copper cobalt oxide nanoparticles (CCO NPs) were synthesized as an oxygen evolution electrocatalyst via a simple co-precipitation method, with the composition being controlled by altering the precursor ratio to 1:1, 1:2, and 1:3 (Cu:Co) to investigate the effects of composition changes. The effect of the ratio of Cu2+/Co3+ and the degree of oxidation during the co-precipitation and annealing steps on the crystal structure, morphology, and electrocatalytic properties of the produced CCO NPs were studied. The CCO1:2 electrode exhibited an outstanding performance and high stability owing to the suitable electrochemical kinetics, which was provided by the presence of sufficient Co3+ as active sites for oxygen evolution and the uniform sizes of the NPs in the half cell. Furthermore, single cell tests were performed to confirm the possibility of using the synthesized electrocatalyst in a practical water splitting system. The CCO1:2 electrocatalyst was used as an anode to develop an anion exchange membrane water electrolyzer (AEMWE) cell. The full cell showed stable hydrogen production for 100 h with an energetic efficiency of >71%. In addition, it was possible to mass produce the uniform, highly active electrocatalyst for such applications through the co-precipitation method.

5.
Front Pharmacol ; 11: 601448, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362555

RESUMO

Histone deacetylase (HDAC) inhibitors, which regulate gene expression by inhibiting the deacetylation of histones and nonhistone proteins, have been shown to exert a wide array of biological effects; these include anti-cancer, anti-obesity, and anti-diabetes effects, as well as cardiovascular-protective activity. However, the effects of class I HDAC inhibition on lipotoxicity in C2C12 myotubes and skeletal muscle tissue remain poorly understood. In this study, we investigated the molecular mechanism underlying the protective effect of class I HDAC inhibition under lipotoxic conditions, i.e., in palmitate (PA)-treated C2C12 myotubes and skeletal muscle tissue in high fat (HF)/high fructose (HFr) diet mice. PA treatment of C2C12 myotubes increased HDAC3 protein expression and impaired mitochondrial oxidation, resulting in increased mitochondrial ROS generation and an accumulation of intracellular triglycerides (TG). Prolonged exposure led to increased inflammatory cytokine expression and insulin resistance. In contrast, MS-275, a class I HDAC inhibitor, dramatically attenuated lipotoxicity, preventing PA-induced insulin resistance and inflammatory cytokine expression. Similar beneficial effects were also seen following HDAC3 knockdown. In addition, MS-275 increased the mRNA expression of peroxisome proliferator activator receptor γ-coactivator 1α (PGC1α) and mitochondrial transcription factor A (TFAM), which serve as transcriptional coactivators in the context of mitochondrial metabolism and biogenesis, and restored expression of peroxisome proliferator-activated receptor alpha (PPARα), medium-chain acyl-coenzyme A dehydrogenase (MCAD), enoyl-CoA hydratase, and 3-hydroxyacyl CoA dehydrogenase (EHHADH). In vivo, treatment of HF/HFr-fed mice with MS-275 ameliorated hyperglycemia, insulin resistance, stress signals, and TNF-α expression in skeletal muscle. Taken together, these results suggest that HDAC3 inhibition rather than HDAC1/2 inhibition by MS-275 protects against lipotoxicity in C2C12 myotubes and skeletal muscle, and may be effective for the treatment of obesity and insulin resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...