Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941170

RESUMO

Brain plasticity plays a significant role in functional recovery after stroke, but the specific benefits of hand rehabilitation robot therapy remain unclear. Evaluating the specific effects of hand rehabilitation robot therapy is crucial in understanding how it impacts brain activity and its relationship to rehabilitation outcomes. This study aimed to investigate the brain activity pattern during hand rehabilitation exercise using functional magnetic resonance imaging (fMRI), and to compare it before and after 3-week hand rehabilitation robot training. To evaluate it, an fMRI experimental environment was constructed to facilitate the same hand posture used in rehabilitation robot therapy. Two stroke survivors participated and the conjunction analysis results from fMRI scans showed that patient 1 exhibited a significant improvement in activation profile after hand rehabilitation robot training, indicative of improved motor function in the bilateral motor cortex. However, activation profile of patient 2 exhibited a slight decrease, potentially due to habituation to the rehabilitation task. Clinical results supported these findings, with patient 1 experiencing a greater increase in FMA score than patient 2. These results suggest that hand rehabilitation robot therapy can induce different brain activity patterns in stroke survivors, which may be linked to patient-specific training outcomes. Further studies with larger sample sizes are necessary to confirm these findings.


Assuntos
Córtex Motor , Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Robótica/métodos , Imageamento por Ressonância Magnética , Recuperação de Função Fisiológica/fisiologia
2.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176084

RESUMO

Rehabilitation of the hand motor function is essential for stroke patients to resume activities of daily living. Recent studies have shown that wearable robot systems, like a multi degree-of-freedom soft glove, have the potential to improve hand motor impairment. The rehabilitation system, which is intuitively controlled according to the user's intention, is expected to induce active participation of the user and further promote brain plasticity. However, due to the patient-specific nature of stroke patients, extracting the intention from stroke patients is still challenging. In this study, we implemented a classifier that combines EEG and EMG to detect chronic stroke patients' four types of intention: rest, grasp, hold, and release. Three chronic stroke patients participated in the experiment and performed rest, grasp, hold, and release actions. The rest vs. grasp binary classifier and release vs. hold binary classifier showed 76.9% and 86.6% classification accuracy in real-time, respectively. In addition, patient-specific accuracy comparisons showed that the hybrid approach was robust to upper limb impairment level compared to other approaches. We believe that these results could pave the way for the development of BCI-based robotic hand rehabilitation therapy.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Atividades Cotidianas , Eletroencefalografia/métodos , Mãos , Força da Mão , Humanos , Intenção , Reabilitação do Acidente Vascular Cerebral/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-23366870

RESUMO

Several clinical studies have reported that EEG synchrony is affected by Alzheimer's disease (AD). In this paper a frequency band analysis of AD EEG signals is presented, with the aim of improving the diagnosis of AD using EEG signals. In this paper, multiple synchrony measures are assessed through statistical tests (Mann-Whitney U test), including correlation, phase synchrony and Granger causality measures. Moreover, linear discriminant analysis (LDA) is conducted with those synchrony measures as features. For the data set at hand, the frequency range (5-6 Hz) yields the best accuracy for diagnosing AD, which lies within the classical theta band (4-8 Hz). The corresponding classification error is 4.88% for directed transfer function (DTF) Granger causality measure. Interestingly, results show that EEG of AD patients is more synchronous than in healthy subjects within the optimized range 5-6 Hz, which is in sharp contrast with the loss of synchrony in AD EEG reported in many earlier studies. This new finding may provide new insights about the neurophysiology of AD. Additional testing on larger AD datasets is required to verify the effectiveness of the proposed approach.


Assuntos
Algoritmos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Sincronização Cortical , Diagnóstico por Computador/métodos , Eletroencefalografia/métodos , Reconhecimento Automatizado de Padrão/métodos , Idoso , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Artigo em Inglês | MEDLINE | ID: mdl-22255728

RESUMO

Many clinical studies have shown that electroencephalograms (EEG) of Alzheimer patients (AD) often have an abnormal power spectrum. In this paper a frequency band analysis of AD EEG signals is presented, with the aim of improving the diagnosis of AD from EEG signals. Relative power in different EEG frequency bands is used as features to distinguish between AD patients and healthy control subjects. Many different frequency bands between 4 and 30 Hz are systematically tested, besides the traditional frequency bands, e.g., theta band (4-8 Hz). The discriminative power of the resulting spectral features is assessed through statistical tests (Mann-Whitney U test). Moreover, linear discriminant analysis is conducted with those spectral features. The optimized frequency ranges (4-7 Hz, 8-15 Hz, 19-24 Hz) yield substantially better classification performance than the traditional frequency bands (4-8 Hz, 8-12 Hz, 12-30 Hz); the frequency band 4-7 Hz is the optimal frequency range for detecting AD, which is similar to the classical theta band. The frequency bands were also optimized as features through leave-one-out crossvalidation, resulting in error-free classification. The optimized frequency bands may improve existing EEG based diagnostic tools for AD. Additional testing on larger AD datasets is required to verify the effectiveness of the proposed approach.


Assuntos
Algoritmos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Diagnóstico por Computador/métodos , Eletroencefalografia/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA