Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 21215, 2024 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261511

RESUMO

Advances in next-generation sequencing technologies have led to elucidation of sensorineural hearing loss genetics and associated clinical impacts. However, studies on the functional pathogenicity of variants of uncertain significance (VUS), despite their close association with clinical phenotypes, are lacking. Here we identified compound heterozygous variants in ESRRB transcription factor gene linked to DFNB35, specifically a novel splicing variant (NM_004452.4(ESRRB): c.397 + 2T>G) in trans with a missense variant (NM_004452.4(ESRRB): c.1144C>T p.(Arg382Cys)) whose pathogenicity remains unclear. The splicing variant (c.397 + 2T>G) caused exon 4 skipping, leading to premature stop codon formation and nonsense-mediated decay. The p.(Arg382Cys) variant was classified as a VUS due to its particularly higher allele frequency among East Asian population despite disease-causing in-silico predictions. However, functional assays showed that p.(Arg382Cys) variant disrupted key intramolecular interactions, leading to protein instability. This variant also reduced transcriptional activity and altered expression of downstream target genes essential for inner ear function, suggesting genetic contribution to disease phenotype. This study expanded the phenotypic and genotypic spectrum of ESRRB in DFNB35 and revealed molecular mechanisms underlying ESRRB-associated DFNB35. These findings suggest that variants with high allele frequencies can also possess functional pathogenicity, providing a breakthrough for cases where VUS, previously unexplored, could be reinterpreted by elucidating their functional roles and disease-causing characteristics.


Assuntos
Perda Auditiva Neurossensorial , Receptores de Estrogênio , Feminino , Humanos , Masculino , Códon sem Sentido/genética , Frequência do Gene , Predisposição Genética para Doença , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Mutação de Sentido Incorreto , Linhagem , Splicing de RNA/genética , Receptores de Estrogênio/genética
2.
Biochem Biophys Res Commun ; 528(1): 46-53, 2020 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-32456797

RESUMO

GATA1 is a master transcription factor of megakaryopoiesis and erythropoiesis, and loss-of-function mutation can induce accumulation of megakaryocyte-erythroid progenitors (MEPs) in mice and humans. Accordingly, the murine MEP cell line (termed G1ME2 cells) encoding doxycycline (dox)-inducible anti-Gata1 shRNA on Hprt locus has been developed. The cells were CD41+CD71+KIT+, expand under dox, stem cell factor, and thrombopoietin (TPO), and terminally differentiate into erythroid cells or megakaryocytes upon removal of dox. Surprisingly, in this study, these Gata1low murine MEPs displayed accelerated growth from around 90-100 days after cell culture, impeded megakaryocytic potential, and maintained erythropoiesis. We specified them as late G1ME2 cells and discovered that increased CD41-KIT+ population during long-term culture was the main reason for the delayed megakaryopoiesis. The CD41 expression level was partially de-repressed by PI3K/AKT inhibitors, suggesting that TPO-mediated cell survival signaling pathway might have impacted on CD41 in the late G1ME2 cells. Nevertheless, among the late cells, the CD41+KIT+ cells could still generate megakaryocytes on dox withdrawal. Taken together, G1ME2 cells could provide a good model to study molecular mechanism of hematopoiesis because of their ability to expand excessively without artificial immortalization.


Assuntos
Diferenciação Celular , Fator de Transcrição GATA1/metabolismo , Células Progenitoras de Megacariócitos e Eritrócitos/citologia , Células Progenitoras de Megacariócitos e Eritrócitos/metabolismo , Animais , Ciclo Celular , Proliferação de Células , Células Cultivadas , Camundongos , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA