Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 96(1): e29346, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38178580

RESUMO

Orthohantaviruses, etiological agents of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome, pose a critical public health threat worldwide. Hantaan orthohantavirus (HTNV) outbreaks are particularly endemic in Gyeonggi Province in northern area of the Republic of Korea (ROK). Small mammals were collected from three regions in the Gyeonggi Province during 2017 and 2018. Serological and molecular prevalence of HTNV was 25/201 (12.4%) and 10/25 (40%), respectively. A novel nanopore-based diagnostic assay using a cost-efficient Flongle chip was developed to rapidly and sensitively detect HTNV infection in rodent specimens within 3 h. A rapid phylogeographical surveillance of HTNV at high-resolution phylogeny was established using the amplicon-based Flongle sequencing. In total, seven whole-genome sequences of HTNV were newly obtained from wild rodents collected in Paju-si (Gaekhyeon-ri) and Yeoncheon-gun (Hyeonga-ri and Wangnim-ri), Gyeonggi Province. Phylogenetic analyses revealed well-supported evolutionary divergence and genetic diversity, enhancing the resolution of the phylogeographic map of orthohantaviruses in the ROK. Incongruences in phylogenetic patterns were identified among HTNV tripartite genomes, suggesting differential evolution for each segment. These findings provide crucial insights into on-site diagnostics, genome-based surveillance, and the evolutionary dynamics of orthohantaviruses to mitigate hantaviral outbreaks in HFRS-endemic areas in the ROK.


Assuntos
Vírus Hantaan , Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Animais , Filogenia , Vírus Hantaan/genética , Orthohantavírus/genética , Roedores , Mamíferos , República da Coreia/epidemiologia
2.
PLoS Negl Trop Dis ; 16(9): e0010763, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36094957

RESUMO

BACKGROUND: Whole-genome sequencing plays a critical role in the genomic epidemiology intended to improve understanding the spread of emerging viruses. Dabie bandavirus, causing severe fever with thrombocytopenia syndrome (SFTS), is a zoonotic tick-borne virus that poses a significant public health threat. We aimed to evaluate a novel amplicon-based nanopore sequencing tool to obtain whole-genome sequences of Dabie bandavirus, also known as SFTS virus (SFTSV), and investigate the molecular prevalence in wild ticks, Republic of Korea (ROK). PRINCIPAL FINDINGS: A total of 6,593 ticks were collected from Gyeonggi and Gangwon Provinces, ROK in 2019 and 2020. Quantitative polymerase chain reaction revealed the presence of SFSTV RNA in three Haemaphysalis longicornis ticks. Two SFTSV strains were isolated from H. longicornis captured from Pocheon and Cheorwon. Multiplex polymerase chain reaction-based nanopore sequencing provided nearly full-length tripartite genome sequences of SFTSV within one hour running. Phylogenetic and reassortment analyses were performed to infer evolutionary relationships among SFTSVs. Phylogenetic analysis grouped SFTSV Hl19-31-4 and Hl19-31-13 from Pocheon with sub-genotype B-1 in all segments. SFTSV Hl20-8 was found to be a genomic organization compatible with B-1 (for L segment) and B-2 (for M and S segments) sub-genotypes, indicating a natural reassortment between sub-genotypes. CONCLUSION/SIGNIFICANCE: Amplicon-based next-generation sequencing is a robust tool for whole-genome sequencing of SFTSV using the nanopore platform. The molecular prevalence and geographical distribution of SFTSV enhanced the phylogeographic map at high resolution for sophisticated prevention of emerging SFTS in endemic areas. Our findings provide important insights into the rapid whole-genome sequencing and genetic diversity for the genome-based diagnosis of SFTSV in the endemic outbreak.


Assuntos
Infecções por Bunyaviridae , Sequenciamento por Nanoporos , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Carrapatos , Animais , Infecções por Bunyaviridae/epidemiologia , Variação Genética , Reação em Cadeia da Polimerase Multiplex , Phlebovirus/genética , Filogenia , RNA , República da Coreia/epidemiologia
3.
Appl Microbiol Biotechnol ; 106(4): 1531-1542, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35141866

RESUMO

The potential use of biological agents has become a major public health concern worldwide. According to the CDC classification, Bacillus anthracis and Clostridium botulinum, the bacterial pathogens that cause anthrax and botulism, respectively, are considered to be the most dangerous potential biological agents. Currently, there is no licensed vaccine that is well suited for mass immunization in the event of an anthrax or botulism epidemic. In the present study, we developed a dual-expression system-based multipathogen DNA vaccine that encodes the PA-D4 gene of B. anthracis and the HCt gene of C. botulinum. When the multipathogen DNA vaccine was administered to mice and guinea pigs, high level antibody responses were elicited against both PA-D4 and HCt. Analysis of the serum IgG subtype implied a combined Th1/Th2 response to both antigens, but one that was Th2 skewed. In addition, immunization with the multipathogen DNA vaccine induced effective neutralizing antibody activity against both PA-D4 and HCt. Finally, the protection efficiency of the multipathogen DNA vaccine was determined by sequential challenge with 10 LD50 of B. anthracis spores and 10 LD50 of botulinum toxin, or vice versa, and the multipathogen DNA vaccine provided higher than 50% protection against lethal challenge with both high-risk biothreat agents. Our studies suggest the strategy used for this anthrax-botulinum multipathogen DNA vaccine as a prospective approach for developing emergency vaccines that can be immediately distributed on a massive scale in response to a biothreat emergency or infectious disease outbreak. Key points • A novel multipathogen DNA vaccine was constructed against anthrax and botulism. • Robust immune responses were induced following vaccination. • Suggests a potential vaccine development strategy against biothreat agents.


Assuntos
Vacinas contra Antraz , Antraz , Bacillus anthracis , Botulismo , Vacinas de DNA , Animais , Antraz/prevenção & controle , Anticorpos Antibacterianos , Antígenos de Bactérias/genética , Bacillus anthracis/genética , Armas Biológicas , Botulismo/prevenção & controle , Cobaias , Imunidade , Camundongos , Vacinas de DNA/genética
4.
PLoS Negl Trop Dis ; 15(9): e0009707, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34582439

RESUMO

BACKGROUND: Hantavirus infection occurs through the inhalation of aerosolized excreta, including urine, feces, and saliva of infected rodents. The presence of Hantaan virus (HTNV) RNA or infectious particles in urine specimens of patient with hemorrhagic fever with renal syndrome (HFRS) remains to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: We collected four urine and serum specimens of Republic of Korea Army (ROKA) patients with HFRS. We performed multiplex PCR-based next-generation sequencing (NGS) to obtain the genome sequences of clinical HTNV in urine specimens containing ultra-low amounts of viral genomes. The epidemiological and phylogenetic analyses of HTNV demonstrated geographically homogenous clustering with those in Apodemus agrarius captured in highly endemic areas, indicating that phylogeographic tracing of HTNV genomes reveals the potential infection sites of patients with HFRS. Genetic exchange analyses showed a genetic configuration compatible with HTNV L segment exchange in nature. CONCLUSION/SIGNIFICANCE: Our results suggest that whole or partial genome sequences of HTNV from the urine enabled to track the putative infection sites of patients with HFRS by phylogeographically linking to the zoonotic HTNV from the reservoir host captured at endemic regions. This report raises awareness among physicians for the presence of HTNV in the urine of patients with HFRS.


Assuntos
Genoma Viral , Vírus Hantaan/isolamento & purificação , Febre Hemorrágica com Síndrome Renal/virologia , Urina/virologia , Vírus Hantaan/classificação , Vírus Hantaan/genética , Febre Hemorrágica com Síndrome Renal/urina , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase Multiplex , Filogenia , República da Coreia
5.
Sci Rep ; 11(1): 6009, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727674

RESUMO

The South Korean government effectively contained the coronavirus disease-2019 (COVID-19) outbreak primarily associated with a religious group. We conducted SARS-CoV-2 whole genome sequencing of 66 cases to investigate connections among the initial South Korean cases and the religious group outbreak. We assessed the accuracy of genomic investigation by comparing the whole genome sequences with comprehensive contact tracing records. Five transmission clusters were estimated among the 15 initial cases. The six close-contact cases and two potential exposure pairs identified by contact tracing showed two or fewer nucleotide base differences. Additionally, we identified two transmission clusters that were phylogenetically distinct from the initial clusters, sharing common G11083T, G26144T, and C14805T markers. The strain closest to the two additional clusters was identified from a pair of identical sequences isolated from individuals who traveled from Wuhan to Italy. Our findings provide insights into the origins of community spread of COVID-19.


Assuntos
COVID-19/patologia , SARS-CoV-2/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Criança , Pré-Escolar , Busca de Comunicante , Surtos de Doenças , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , República da Coreia/epidemiologia , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Sequenciamento Completo do Genoma , Adulto Jovem
6.
Nat Commun ; 12(1): 288, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436577

RESUMO

Vaccines and therapeutics are urgently needed for the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we screen human monoclonal antibodies (mAb) targeting the receptor binding domain (RBD) of the viral spike protein via antibody library constructed from peripheral blood mononuclear cells of a convalescent patient. The CT-P59 mAb potently neutralizes SARS-CoV-2 isolates including the D614G variant without antibody-dependent enhancement effect. Complex crystal structure of CT-P59 Fab/RBD shows that CT-P59 blocks interaction regions of RBD for angiotensin converting enzyme 2 (ACE2) receptor with an orientation that is notably different from previously reported RBD-targeting mAbs. Furthermore, therapeutic effects of CT-P59 are evaluated in three animal models (ferret, hamster, and rhesus monkey), demonstrating a substantial reduction in viral titer along with alleviation of clinical symptoms. Therefore, CT-P59 may be a promising therapeutic candidate for COVID-19.


Assuntos
Anticorpos Neutralizantes/farmacologia , Tratamento Farmacológico da COVID-19 , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/química , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Furões , Humanos , Leucócitos Mononucleares , Macaca mulatta , Masculino , Mesocricetus , Modelos Moleculares , Conformação Proteica , Glicoproteína da Espícula de Coronavírus/química , Células Vero
7.
PLoS Negl Trop Dis ; 14(10): e0008714, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33035222

RESUMO

BACKGROUND: Hantaan orthohantavirus (Hantaan virus, HTNV), harbored by Apodemus agrarius (the striped field mouse), causes hemorrhagic fever with renal syndrome (HFRS) in humans. Viral genome-based surveillance at new expansion sites to identify HFRS risks plays a critical role in tracking the infection source of orthohantavirus outbreak. In the Republic of Korea (ROK), most studies demonstrated the serological prevalence and genetic diversity of orthohantaviruses collected from HFRS patients or rodents in Gyeonggi Province. Gangwon Province is a HFRS-endemic area with a high incidence of patients and prevalence of infected rodents, ROK. However, the continued epidemiology and surveillance of orthohantavirus remain to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: Whole-genome sequencing of HTNV was accomplished in small mammals collected in Gangwon Province during 2015-2018 by multiplex PCR-based next-generation sequencing. To elucidate the geographic distribution and molecular diversity of viruses, we conducted phylogenetic analyses of HTNV tripartite genomes. We inferred the hybrid zone using cline analysis to estimate the geographic contact between two different HTNV lineages in the ROK. The graph incompatibility based reassortment finder performed reassortment analysis. A total of 12 HTNV genome sequences were completely obtained from A. agrarius newly collected in Gangwon Province. The phylogenetic and cline analyses demonstrated the genetic diversity and hybrid zone of HTNV in the ROK. Genetic exchange analysis suggested the possibility of reassortments in Cheorwon-gun, a highly HFRS-endemic area. CONCLUSIONS/SIGNIFICANCE: The prevalence and distribution of HTNV in HFRS-endemic areas of Gangwon Province enhanced the phylogeographic map for orthohantavirus outbreak monitoring in ROK. This study revealed the hybrid zone reflecting the genetic diversity and evolutionary dynamics of HTNV circulating in Gangwon Province. The results arise awareness of rodent-borne orthohantavirus diseases for physicians in the endemic area of ROK.


Assuntos
Genoma Viral , Vírus Hantaan/genética , Murinae/virologia , Animais , Anticorpos Antivirais , Doenças Endêmicas , Filogenia , República da Coreia
8.
Viruses ; 12(9)2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872451

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging human pathogen, endemic in areas of China, Japan, and the Korea (KOR). It is primarily transmitted through infected ticks and can cause a severe hemorrhagic fever disease with case fatality rates as high as 30%. Despite its high virulence and increasing prevalence, molecular and functional studies in situ are scarce due to the limited availability of high-titer SFTSV exposure stocks. During the course of field virologic surveillance in 2017, we detected SFTSV in ticks and in a symptomatic soldier in a KOR Army training area. SFTSV was isolated from the ticks producing a high-titer viral exposure stock. Through the use of advanced genomic tools, we present here a complete, in-depth characterization of this viral stock, including a comparison with both the virus in its arthropod source and in the human case, and an in vivo study of its pathogenicity. Thanks to this detailed characterization, this SFTSV viral exposure stock constitutes a quality biological tool for the study of this viral agent and for the development of medical countermeasures, fulfilling the requirements of the main regulatory agencies.


Assuntos
Infecções por Bunyaviridae/virologia , Febres Hemorrágicas Virais/virologia , Phlebovirus/isolamento & purificação , Adulto , Animais , Infecções por Bunyaviridae/genética , Infecções por Bunyaviridae/metabolismo , Feminino , Genoma Viral , Humanos , Masculino , Camundongos , Phlebovirus/fisiologia , Filogenia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , República da Coreia , Carrapatos/virologia
9.
Curr Drug Deliv ; 17(5): 414-421, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32286944

RESUMO

PURPOSE: Anthrax is a lethal bacterial disease caused by gram-positive bacterium Bacillus anthracis and vaccination is a desirable method to prevent anthrax infections. In the present study, DNA vaccine encoding a protective antigen of Bacillus anthracis was prepared and we investigated the influence of DNA electrotransfer in the skin on the induced immune response and biodistribution. METHODS AND RESULTS: The tdTomato reporter gene for the whole animal in vivo imaging was used to assess gene transfer efficiency into the skin as a function of electrical parameters. Compared to that with 25 V, the transgene expression of red fluorescent protein increased significantly when a voltage of 90 V was used. Delivery of DNA vaccines expressing Bacillus anthracis protective antigen domain 4 (PAD4) with an applied voltage of 90 V induced robust PA-D4-specific antibody responses. In addition, the in vivo fate of anthrax DNA vaccine was studied after intradermal administration into the mouse. DNA plasmids remained at the skin injection site for an appropriate period of time after immunization. Intradermal administration of DNA vaccine resulted in detection in various organs (viz., lung, heart, kidney, spleen, brain, and liver), although the levels were significantly reduced. CONCLUSION: Our results offer important insights into how anthrax DNA vaccine delivery by intradermal electroporation affects the immune response and biodistribution of DNA vaccine. Therefore, it may provide valuable information for the development of effective DNA vaccines against anthrax infection.


Assuntos
Vacinas contra Antraz/administração & dosagem , Vacinas de DNA/administração & dosagem , Animais , Vacinas contra Antraz/farmacocinética , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Bacillus anthracis/imunologia , Toxinas Bacterianas/imunologia , Eletroporação , Feminino , Expressão Gênica , Genes Reporter , Imunoglobulina G/sangue , Injeções Intradérmicas , Proteínas Luminescentes/genética , Camundongos Endogâmicos BALB C , Plasmídeos , Pele/metabolismo , Distribuição Tecidual , Vacinas de DNA/farmacocinética , Proteína Vermelha Fluorescente
10.
Front Cell Infect Microbiol ; 10: 532388, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33489927

RESUMO

Emerging and re-emerging RNA viruses pose significant public health, economic, and societal burdens. Hantaviruses (genus Orthohantavirus, family Hantaviridae, order Bunyavirales) are enveloped, negative-sense, single-stranded, tripartite RNA viruses that are emerging zoonotic pathogens harbored by small mammals such as rodents, bats, moles, and shrews. Orthohantavirus infections cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome in humans (HCPS). Active targeted surveillance has elucidated high-resolution phylogeographic relationships between patient- and rodent-derived orthohantavirus genome sequences and identified the infection source by temporally and spatially tracking viral genomes. Active surveillance of patients with HFRS entails 1) recovering whole-genome sequences of Hantaan virus (HTNV) using amplicon (multiplex PCR-based) next-generation sequencing, 2) tracing the putative infection site of a patient by administering an epidemiological questionnaire, and 3) collecting HTNV-positive rodents using targeted rodent trapping. Moreover, viral genome tracking has been recently performed to rapidly and precisely characterize an outbreak from the emerging virus. Here, we reviewed genomic epidemiological and active surveillance data for determining the emergence of zoonotic RNA viruses based on viral genomic sequences obtained from patients and natural reservoirs. This review highlights the recent studies on tracking viral genomes for identifying and characterizing emerging viral outbreaks worldwide. We believe that active surveillance is an effective method for identifying rodent-borne orthohantavirus infection sites, and this report provides insights into disease mitigation and preparedness for managing emerging viral outbreaks.


Assuntos
Orthohantavírus , Surtos de Doenças , Genômica , Orthohantavírus/genética , Humanos , Filogenia , Conduta Expectante
11.
Clin Infect Dis ; 70(3): 464-473, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30891596

RESUMO

BACKGROUND: Endemic outbreaks of hantaviruses pose a critical public health threat worldwide. Hantaan orthohantavirus (HTNV) causes hemorrhagic fever with renal syndrome (HFRS) in humans. Using comparative genomic analyses of partial and nearly complete sequences of HTNV from humans and rodents, we were able to localize, with limitations, the putative infection locations for HFRS patients. Partial sequences might not reflect precise phylogenetic positions over the whole-genome sequences; finer granularity of rodent sampling reflects more precisely the circulation of strains. METHODS: Five HFRS specimens were collected. Epidemiological surveys were conducted with the patients during hospitalization. We conducted active surveillance at suspected HFRS outbreak areas. We performed multiplex polymerase chain reaction-based next-generation sequencing to obtain the genomic sequence of HTNV from patients and rodents. The phylogeny of human- and rodent-derived HTNV was generated using the maximum likelihood method. For phylogeographic analyses, the tracing of HTNV genomes from HFRS patients was defined on the bases of epidemiological interviews, phylogenetic patterns of the viruses, and geographic locations of HTNV-positive rodents. RESULTS: The phylogeographic analyses demonstrated genetic clusters of HTNV strains from clinical specimens, with HTNV circulating in rodents at suspected sites of patient infections. CONCLUSIONS: This study demonstrates a major shift in molecular epidemiological surveillance of HTNV. Active targeted surveillance was performed at sites of suspected infections, allowing the high-resolution phylogeographic analysis to reveal the site of emergence of HTNV. We posit that this novel approach will make it possible to identify infectious sources, perform disease risk assessment, and implement preparedness against vector-borne viruses.


Assuntos
Vírus Hantaan , Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Orthohantavírus/genética , Febre Hemorrágica com Síndrome Renal/epidemiologia , Humanos , Filogenia , Conduta Expectante
12.
Sci Rep ; 9(1): 16631, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719616

RESUMO

Orthohantaviruses, negative-sense single-strand tripartite RNA viruses, are a global public health threat. In humans, orthohantavirus infection causes hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome. Whole-genome sequencing of the virus helps in identification and characterization of emerging or re-emerging viruses. Next-generation sequencing (NGS) is a potent method to sequence the viral genome, using molecular enrichment methods, from clinical specimens containing low virus titers. Hence, a comparative study on the target enrichment NGS methods is required for whole-genome sequencing of orthohantavirus in clinical samples. In this study, we used the sequence-independent, single-primer amplification, target capture, and amplicon NGS for whole-genome sequencing of Hantaan orthohantavirus (HTNV) from rodent specimens. We analyzed the coverage of the HTNV genome based on the viral RNA copy number, which is quantified by real-time quantitative PCR. Target capture and amplicon NGS demonstrated a high coverage rate of HTNV in Apodemus agrarius lung tissues containing up to 103-104 copies/µL of HTNV RNA. Furthermore, the amplicon NGS showed a 10-fold (102 copies/µL) higher sensitivity than the target capture NGS. This report provides useful insights into target enrichment NGS for whole-genome sequencing of orthohantaviruses without cultivating the viruses.


Assuntos
Vírus Hantaan/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pulmão/virologia , Murinae/virologia , Sequenciamento Completo do Genoma/métodos , Animais , Genoma Viral/genética , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , República da Coreia
13.
J Microbiol Biotechnol ; 29(7): 1165-1176, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31280529

RESUMO

Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, are the most toxic substances known. However, the number of currently approved medical countermeasures for these toxins is very limited. Therefore, studies on therapeutic antitoxins are essential to prepare for toxin-related emergencies. Currently, more than 10,000 Halla horses, a crossbreed between the native Jeju and Thoroughbred horses, are being raised in Jeju Island of Korea. They can be used for equine antitoxin experiments and production of hyperimmune serum against BoNT/A1. Instead of the inactivated BoNT/A1 toxoid, Halla horse was immunized with the receptor-binding domain present in the C-terminus of heavy chain of BoNT/A1 (BoNT/A1-HCR) expressed in Escherichia coli. The anti-BoNT/A1-HCR antibody titer increased rapidly by week 4, and this level was maintained for several weeks after boosting immunization. Notably, 20 µL of the week 24 BoNT/A1-HCR(-immunized) equine serum showed an in vitro neutralizing activity of over 8 international unit (IU) of a reference equine antitoxin. Furthermore, 20 µL of equine serum and 100 µg of purified equine F(ab')2 showed 100% neutralization of 10,000 LD50 in vivo. The results of this study shall contribute towards optimizing antitoxin production for BoNT/A1, which is essential for emergency preparedness and response.


Assuntos
Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/imunologia , Antitoxina Botulínica/imunologia , Toxinas Botulínicas Tipo A/imunologia , Clostridium botulinum/imunologia , Fragmentos de Peptídeos/imunologia , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/química , Antitoxina Botulínica/sangue , Toxinas Botulínicas Tipo A/química , Feminino , Cavalos , Imunização/veterinária , Camundongos Endogâmicos BALB C , Testes de Neutralização/veterinária , Fragmentos de Peptídeos/química , Coelhos
14.
Sci Rep ; 8(1): 18, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311588

RESUMO

The recombinant phage endolysins AP50-31 and LysB4 were developed using genetic information from bacteriophages AP50 and B4 and were produced by microbial cultivation followed by chromatographic purification. Subsequently, appropriate formulations were developed that provided an acceptable stability of the recombinant endolysins. The bacteriolytic properties of the formulated endolysins AP50-31 and LysB4 against several bacterial strains belonging to the Bacillus genus including Bacillus anthracis (anthrax) strains were examined. AP50-31 and LysB4 displayed rapid bacteriolytic activity and broad bacteriolytic spectra within the Bacillus genus, including bacteriolytic activity against all the B. anthracis strains tested. When administered intranasally, LysB4 completely protected A/J mice from lethality after infection with the spores of B. anthracis Sterne. When examined at 3 days post-infection, bacterial counts in the major organs (lung, liver, kidney, and spleen) were significantly lower compared with those of the control group that was not treated with endolysin. In addition, histopathological examinations revealed a marked improvement of pathological features in the LysB4-treated group. The results of this study support the idea that phage endolysins are promising candidates for developing therapeutics against anthrax infection.


Assuntos
Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Endopeptidases/farmacologia , Proteínas Recombinantes/farmacologia , Animais , Antraz/microbiologia , Antraz/mortalidade , Bacillus anthracis/classificação , Bacillus anthracis/genética , Bacillus anthracis/virologia , Bacteriólise , Bacteriófagos/enzimologia , Informática/métodos , Camundongos , Filogenia
15.
Emerg Infect Dis ; 24(2): 249-257, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29350137

RESUMO

Seoul virus (SEOV) poses a worldwide public health threat. This virus, which is harbored by Rattus norvegicus and R. rattus rats, is the causative agent of hemorrhagic fever with renal syndrome (HFRS) in humans, which has been reported in Asia, Europe, the Americas, and Africa. Defining SEOV genome sequences plays a critical role in development of preventive and therapeutic strategies against the unique worldwide hantavirus. We applied multiplex PCR-based next-generation sequencing to obtain SEOV genome sequences from clinical and reservoir host specimens. Epidemiologic surveillance of R. norvegicus rats in South Korea during 2000-2016 demonstrated that the serologic prevalence of enzootic SEOV infections was not significant on the basis of sex, weight (age), and season. Viral loads of SEOV in rats showed wide dissemination in tissues and dynamic circulation among populations. Phylogenetic analyses showed the global diversity of SEOV and possible genomic configuration of genetic exchanges.


Assuntos
Variação Genética , Febre Hemorrágica com Síndrome Renal/virologia , Reação em Cadeia da Polimerase Multiplex , Vírus Seoul/genética , Animais , Genoma Viral , Saúde Global , Febre Hemorrágica com Síndrome Renal/epidemiologia , Humanos , Filogeografia , RNA Viral/genética , Ratos , República da Coreia/epidemiologia , Estudos Retrospectivos , Estações do Ano , Testes Sorológicos
16.
Bioengineered ; 9(1): 17-24, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28692329

RESUMO

Surrogate microorganisms, in short surrogates, are an essential part of pathogen research. Compared to surrogates used in controlled laboratory environments, surrogates for field release are restricted by concerns about human and environmental safety. For field research of food-borne pathogens, strains of an attenuated pathogen or strains of genetically close non-pathogenic species have been used as surrogates. Genetic modification is usually performed to attenuate virulence, through for examples deletion of genes of virulence and transcriptional regulators and removal of virulence plasmids, and to facilitate detection and monitoring through observing antibiotic resistance, fluorescence, and bioluminescence. For field research of a biological warfare agent Bacillus anthracis, strains of genetically close non-pathogenic species or strains of genetically distant non-pathogenic species have been used, mostly without any genetic modification. Recently, we constructed strains of Bacillus thuringiensis as surrogates for B. anthracis, demonstrating that strain engineering could significantly enhance the utility of surrogates, and that the application of a simple genetic circuit could significantly impact surrogate safety. Thus far, enormous potential of biotechnology has not been exploited enough due to safety concerns regarding the field release of genetically engineered microorganisms. However, synthetic biology is rapidly developing, providing new concepts for biocontainment as well as ingenious genetic circuits and devices, which should be applied in future research of field-use surrogates.


Assuntos
Bacillus anthracis/patogenicidade , Bacillus thuringiensis/genética , Contenção de Riscos Biológicos/métodos , Engenharia Genética/métodos , Biologia Sintética/métodos , Bacillus anthracis/genética , Bacillus anthracis/crescimento & desenvolvimento , Bacillus thuringiensis/crescimento & desenvolvimento , Biotecnologia/métodos , Contenção de Riscos Biológicos/ética , Humanos , Plasmídeos/química , Plasmídeos/metabolismo , Virulência
17.
Hum Vaccin Immunother ; 14(2): 329-336, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29140753

RESUMO

Botulinum neurotoxins (BoNTs) are the most potent toxins to mammals. A toxoid vaccine was previously used for prevention of botulinum intoxication; however, this vaccine is no longer available. Currently, no approved botulinum vaccines are available from the Food and Drug Administration (FDA). Recently, a recombinant host cell receptor-binding subunit created for use as a potential vaccine completed phase 2 clinical trials. The current study designed a vaccine candidate against BoNT type A (BoNT/A) using a structural design. Our vaccine candidate was the BoNT/A heavy chain C-terminal region (HCR) that contained the point mutation BA15 (R1269A) within the ganglioside-binding site. A Biacore affinity test showed that the affinity of BA15 for ganglioside GT1b was 100 times lower than that of the HCR. A SNAP25 cleavage assay revealed that immunized sera blocked SNAP25 cleavage of the BoNT/A toxin via BA15. In an in vivo experiment, mice and guinea pigs immunized with BA15 produced neutralizing antibodies that protected against 3,000 LD50 of BoNT/A. In conclusion, the results of both in vitro and in vivo assays showed that our BA15 vaccine candidate was similar to the recombinant host cell receptor-binding subunit vaccine. The inability of BA15to bind ganglioside shows that BA15 is a potential safe vaccine candidate.


Assuntos
Vacinas Bacterianas/imunologia , Toxinas Botulínicas Tipo A/imunologia , Proteínas Recombinantes/imunologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Toxinas Botulínicas Tipo A/genética , Botulismo/prevenção & controle , Linhagem Celular , Gangliosídeos/química , Gangliosídeos/metabolismo , Cobaias , Imunoglobulina G/sangue , Camundongos , Modelos Moleculares , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Mutação Puntual , Conformação Proteica , Subunidades Proteicas
18.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 11): 595-600, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29095152

RESUMO

Four mutations (N23A, Y90A, R110A and F177A) were introduced into S19, a vaccine candidate for staphylococcal enterotoxin B (SEB), resulting in a lower binding affinity towards the T-cell receptor beta chain (TCB) and reducing its superantigen activity. The structure of S19 was solved and was superposed on the native or complex structure of SEB. In the superposition model, mutations that were introduced seemed to reduce the number of hydrogen bonds at the SEB-TCB interface. S19 also displayed an unexpected structural change around the flexible-loop region owing to the Y90A mutation. This local structural change provided evidence that the mutated form of S19 could have a lower affinity for major histocompatibility complex (MHC) class II than wild-type SEB.


Assuntos
Enterotoxinas/química , Enterotoxinas/imunologia , Mutação , Vacinas Antiestafilocócicas/química , Vacinas Antiestafilocócicas/imunologia , Cristalografia por Raios X , Enterotoxinas/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Ligação de Hidrogênio , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Vacinas Antiestafilocócicas/genética
19.
Exp Mol Med ; 49(11): e400, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29170473

RESUMO

B lymphocytes are produced from hematopoietic stem cells (HSCs) through the highly ordered process of B lymphopoiesis, which is regulated by a complex network of cytokines, chemokines and cell adhesion molecules derived from the hematopoietic niche. Primary osteoblasts function as an osteoblastic niche (OBN) that supports in vitro B lymphopoiesis. However, there are significant limitations to the use of primary osteoblasts, including their relative scarcity and the consistency and efficiency of the limited purification and proliferation of these cells. Thus, development of a stable osteoblast cell line that can function as a biomimetic or artificial OBN is necessary. In this study, we developed a stable osteoblastic cell line, designated OBN4, which functions as an osteoblast-based artificial niche that supports in vitro B lymphopoiesis. We demonstrated that the production of a B220+ cell population from Lineage- (Lin-) Sca-1+ c-Kit+ hematopoietic stem and progenitor cells (HSPCs) was increased ~1.7-fold by OBN4 cells relative to production by primary osteoblasts and OP9 cells in coculture experiments. Consistently, OBN4 cells exhibited the highest production of B220+ IgM+ cell populations (6.7±0.6-13.6±0.6%) in an IL-7- and stromal cell-derived factor 1-dependent manner, with higher production than primary osteoblasts (3.7±0.5-6.4±0.6%) and OP9 cells (1.8±0.6-3.9±0.5%). In addition, the production of B220+ IgM+ IgD+ cell populations was significantly enhanced by OBN4 cells (15.4±1.1-18.9±3.2%) relative to production by primary osteoblasts (9.5±0.6-14.6±1.6%) and OP9 cells (9.1±0.5-10.3±1.8%). We conclude that OBN4 cells support in vitro B lymphopoiesis of Lin- Sca-1+ c-Kit+ HSPCs more efficiently than primary osteoblasts or OP9 stromal cells.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Diferenciação Celular , Linfopoese , Animais , Biomarcadores , Linhagem Celular , Separação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Imunofenotipagem , Masculino , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Nicho de Células-Tronco
20.
Virus Genes ; 53(6): 918-921, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28795266

RESUMO

Zika virus (ZIKV) (genus Flavivirus, family Flaviviridae) is an emerging pathogen associated with microcephaly and Guillain-Barré syndrome. The rapid spread of ZIKV disease in over 60 countries and the large numbers of travel-associated cases have caused worldwide concern. Thus, intensified surveillance of cases among immigrants and tourists from ZIKV-endemic areas is important for disease control and prevention. In this study, using Next Generation Sequencing, we reported the first whole-genome sequence of ZIKV strain AFMC-U, amplified from the urine of a traveler returning to Korea from the Philippines. Phylogenetic analysis showed geographic-specific clustering. Our results underscore the importance of examining urine in the diagnosis of ZIKV infection.


Assuntos
Infecção por Zika virus/virologia , Humanos , Filipinas , Filogenia , República da Coreia , Viagem , Sequenciamento Completo do Genoma/métodos , Zika virus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...