Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687769

RESUMO

In the modern world, stress has become a pervasive concern that affects individuals' physical and mental well-being. To address this issue, many wearable devices have emerged as potential tools for stress detection and management by measuring heart rate, heart rate variability (HRV), and various metrics related to it. This literature review aims to provide a comprehensive analysis of existing research on HRV tracking and biofeedback using smartwatches pairing with reliable 3rd party mobile apps like Elite HRV, Welltory, and HRV4Training specifically designed for stress detection and management. We apply various algorithms and methodologies employed for HRV analysis and stress detection including time-domain, frequency-domain, and non-linear analysis techniques. Prominent smartwatches, such as Apple Watch, Garmin, Fitbit, Polar, and Samsung Galaxy Watch, are evaluated based on their HRV measurement accuracy, data quality, sensor technology, and integration with stress management features. We describe the efficacy of smartwatches in providing real-time stress feedback, personalized stress management interventions, and promoting overall well-being. To assist researchers, doctors, and developers with using smartwatch technology to address stress and promote holistic well-being, we discuss the data's advantages and limitations, future developments, and the significance of user-centered design and personalized interventions.


Assuntos
Algoritmos , Benchmarking , Humanos , Frequência Cardíaca , Biorretroalimentação Psicológica , Tecnologia
2.
Front Psychiatry ; 12: 645289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305666

RESUMO

Mental Illnesses, particularly anxiety, insomnia, and depression often involve vicious cycles which are self-perpetuating and can trap one into a more chronic state. For example in the case of insomnia, sympathetic overactivity, intrusive thoughts, and emotional instability due to sleep loss can perpetuate further sleep loss the next night and so on. In this article, we put forward a perspective on breaking these vicious cycles based on preeminent theories in global and spatial cognition, that the foundation of the conscious mind is a spatial coordinate system. Based on this we discuss the potential and future of virtual reality therapeutic applications which utilize massive virtual spaces along with biofeedback designed to help break perpetual cycles in depression, anxiety, and insomnia. "Massive spaces" are those which are truly expansive such as when looking to the clear night sky. These virtual realities may take the form of a night sky, fantastical cosmic scenes, or other scenes such as mountain tops. We also hope to inspire research into such a spatial foundation of mind, use of perceived massive spaces for therapy, and the integration of biofeedback into virtual therapies.

3.
Front Psychol ; 11: 1980, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922338

RESUMO

Pulmonary ventilation and respiration are considered to be primarily involved in oxygenation of blood for oxygen delivery to cells throughout the body for metabolic purposes. Other pulmonary physiological observations, such as respiratory sinus arrhythmia, Hering Brewer reflex, cardiorespiratory synchronization, and the heart rate variability (HRV) relationship with breathing rhythm, lack complete explanations of physiological/functional significance. The spectrum of waveforms of breathing activity correlate to anxiety, depression, anger, stress, and other positive and negative emotions. Respiratory pattern has been thought not only to be influenced by emotion but to itself influence emotion in a bi-directional relationship between the body and the mind. In order to show how filling in gaps in understanding could lead to certain future developments in mind-body medicine, biofeedback, and personal health monitoring, we review and discuss empirical work and tracings to express the vital role of bodily rhythms in influencing emotion, autonomic nervous system activity, and even general neural activity. Future developments in measurement and psychophysiological understanding of the pattern of breathing in combination with other parameters such as HRV, cardiorespiratory synchronization, and skin conductivity may allow for biometric monitoring systems to one day accurately predict affective state and even affective disorders such as anxiety. Better affective prediction based on recent research when incorporated into personal health monitoring devices could greatly improve public mental health by providing at-home biofeedback for greater understanding of one's mental state and for mind-body affective treatments such as breathing exercises.

4.
Front Hum Neurosci ; 13: 426, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866845

RESUMO

Bioelectric oscillations occur throughout the nervous system of nearly all animals, revealed to play an important role in various aspects of cognitive activity such as information processing and feature binding. Modern research into this dynamic and intrinsic bioelectric activity of neural cells continues to raise questions regarding their role in consciousness and cognition. In this theoretical article, we assert a novel interpretation of the hierarchical nature of "brain waves" by identifying that the superposition of multiple oscillations varying in frequency corresponds to the superimposing of the contents of consciousness and cognition. In order to describe this isomorphism, we present a layered model of the global functional oscillations of various frequencies which act as a part of a unified metastable continuum described by the Operational Architectonics theory and suggested to be responsible for the emergence of the phenomenal mind. We detail the purposes, functions, and origins of each layer while proposing our main theory that the superimposition of these oscillatory layers mirrors the superimposition of the components of the integrated phenomenal experience as well as of cognition. In contrast to the traditional view that localizations of high and low-frequency activity are spatially distinct, many authors have suggested a hierarchical nature to oscillations. Our theoretical interpretation is founded in four layers which correlate not only in frequency but in evolutionary development. As other authors have done, we explore how these layers correlate to the phenomenology of human experience. Special importance is placed on the most basal layer of slow oscillations in coordinating and grouping all of the other layers. By detailing the isomorphism between the phenomenal and physiologic aspects of how lower frequency layers provide a foundation for higher frequency layers to be organized upon, we provide a further means to elucidate physiological and cognitive mechanisms of mind and for the well-researched outcomes of certain voluntary breathing patterns and meditative practices which modulate the mind and have therapeutic effects for psychiatric and other disorders.

5.
Artigo em Inglês | MEDLINE | ID: mdl-30804763

RESUMO

How does the integrated and unified conscious experience arise from the vastly distributed activities of the nervous system? How is the information from the many cones of the retina bound with information coming from the cochlea to create the association of sounds with objects in visual space? In this perspective article, we assert a novel viewpoint on the "binding problem" in which we explain a metastable operation of the brain and body that may provide insight into this problem. In our view which is a component of the Default Space Theory (DST), consciousness arises from a metastable synchronization of local computations into a global coherence by a framework of widespread slow and ultraslow oscillations coordinated by the thalamus. We reinforce a notion shared by some consciousness researchers such as Revonsuo and the Fingelkurts that a spatiotemporal matrix is the foundation of phenomenological experience and that this phenomenology is directly tied to bioelectric operations of the nervous system. Through the oscillatory binding system we describe, cognitive neuroscientists may be able to more accurately correlate bioelectric activity of the brain and body with the phenomenology of human experience.

6.
Front Hum Neurosci ; 12: 162, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755333

RESUMO

Aside from the nature of consciousness itself, there are still many unsolved problems in the neurosciences. Despite the vast and quickly growing body of work in this field, we still find ourselves perplexed at seemingly simple qualities of our mental being such as why we need to sleep. The neurosciences are at least beginning to take a hold on these mysteries and are working toward solving them. We hold a perspective that metastable consciousness models, specifically the Default Space Model (DSM), provide insights into these mysteries. In this perspective article, we explore some of these curious questions in order to elucidate the interesting points they bring up. The DSM is a dynamic, global theory of consciousness that involves the maintenance of an internal, 3D simulation of the external, physical world which is the foundation and structure of consciousness. This space is created and filled by multiple frequencies of membrane potential oscillations throughout the brain and body which are organized, synchronized and harmonized by the thalamus. The veracity of the DSM is highlighted here in its ability to further understanding of some of the most puzzling problems in neuroscience.

7.
Med Hypotheses ; 110: 71-75, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29317073

RESUMO

A fundamental function of the visual system is detecting motion, yet visual perception is poorly understood. Current research has determined that the retina and ganglion cells elicit responses for motion detection; however, the underlying mechanism for this is incompletely understood. Previously we proposed that retinogeniculo-cortical oscillations and photoreceptors work in parallel to process vision. Here we propose that motion could also be processed within the retina, and not in the brain as current theory suggests. In this paper, we discuss: 1) internal neural space formation; 2) primary, secondary, and tertiary roles of vision; 3) gamma as the secondary role; and 4) synchronization and coherence. Movement within the external field is instantly detected by primary processing within the space formed by the retina, providing a unified view of the world from an internal point of view. Our new theory begins to answer questions about: 1) perception of space, erect images, and motion, 2) purpose of lateral inhibition, 3) speed of visual perception, and 4) how peripheral color vision occurs without a large population of cones located peripherally in the retina. We explain that strong oscillatory activity influences on brain activity and is necessary for: 1) visual processing, and 2) formation of the internal visuospatial area necessary for visual consciousness, which could allow rods to receive precise visual and visuospatial information, while retinal waves could link the lateral geniculate body with the cortex to form a neural space formed by membrane potential-based oscillations and photoreceptors. We propose that vision is tripartite, with three components that allow a person to make sense of the world, terming them "primary, secondary, and tertiary roles" of vision. Finally, we propose that Gamma waves that are higher in strength and volume allow communication among the retina, thalamus, and various areas of the cortex, and synchronization brings cortical faculties to the retina, while the thalamus is the link that couples the retina to the rest of the brain through activity by gamma oscillations. This novel theory lays groundwork for further research by providing a theoretical understanding that expands upon the functions of the retina, photoreceptors, and retinal plexus to include parallel processing needed to form the internal visual space that we perceive as the external world.


Assuntos
Percepção de Movimento/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Percepção Espacial/fisiologia , Córtex Visual/fisiologia , Animais , Sincronização Cortical/fisiologia , Ritmo Gama/fisiologia , Humanos , Modelos Neurológicos , Percepção Visual/fisiologia
8.
Front Psychiatry ; 9: 780, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30761030

RESUMO

Sleep is a quiescent behavioral state during which complex homeostatic functions essential to health and well-being occur. Insomnia is a very common psychiatric disorder leading to a myriad of detrimental effects including loss of concentration, memory, and performance as well as disease. Current pharmaceutical treatments can be expensive, impairing, unhealthy, and habit-forming. Relaxation techniques, such as meditation target the brain and body in contrast to pharmaceutical interventions which solely target neurotransmitter systems in the brain. In this article we present a viewpoint on the treatment of insomnia that techniques of slow, deep breathing (0.1 Hz) in adjunct to sleep hygiene and relaxation therapies may be highly effective in initiating sleep as well as facilitating falling back asleep. The autonomic nervous system is integral to sleep initiation, maintenance, and disruption. Understanding the relationship between the autonomic nervous system and sleep physiology along with the nature of sleep itself remains a challenge to modern science. We present this perspective in light of a prevailing "dysevolution" theory on the pathology of insomnia that proposes hyper-arousal characterized in part by chronic sympathetic hyperactivation and/or parasympathetic hypoactivation disrupts normal sleep onset latency, sleep quality, and sleep duration. We additionally discuss physiological mechanisms responsible for the effectiveness of the breathing treatment we describe. A better understanding of these mechanisms and autonomic pathologies of insomnia may provide support for the effectiveness of such techniques and provide relief to sufferers of this health epidemic.

9.
Med Hypotheses ; 96: 20-29, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27959269

RESUMO

The role of the physiological processes involved in human vision escapes clarification in current literature. Many unanswered questions about vision include: 1) whether there is more to lateral inhibition than previously proposed, 2) the role of the discs in rods and cones, 3) how inverted images on the retina are converted to erect images for visual perception, 4) what portion of the image formed on the retina is actually processed in the brain, 5) the reason we have an after-image with antagonistic colors, and 6) how we remember space. This theoretical article attempts to clarify some of the physiological processes involved with human vision. The global integration of visual information is conceptual; therefore, we include illustrations to present our theory. Universally, the eyeball is 2.4cm and works together with membrane potential, correspondingly representing the retinal layers, photoreceptors, and cortex. Images formed within the photoreceptors must first be converted into chemical signals on the photoreceptors' individual discs and the signals at each disc are transduced from light photons into electrical signals. We contend that the discs code the electrical signals into accurate distances and are shown in our figures. The pre-existing oscillations among the various cortices including the striate and parietal cortex, and the retina work in unison to create an infrastructure of visual space that functionally "places" the objects within this "neural" space. The horizontal layers integrate all discs accurately to create a retina that is pre-coded for distance. Our theory suggests image inversion never takes place on the retina, but rather images fall onto the retina as compressed and coiled, then amplified through lateral inhibition through intensification and amplification on the OFF-center cones. The intensified and amplified images are decompressed and expanded in the brain, which become the images we perceive as external vision. SUMMARY: This is a theoretical article presenting a novel hypothesis about the physiological processes in vision, and expounds upon the visual aspect of two of our previously published articles, "A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience", and "Functional representation of vision within the mind: A visual consciousness model based in 3D default space." Currently, neuroscience teaches that visual images are initially inverted on the retina, processed in the brain, and then conscious perception of vision happens in the visual cortex. Here, we propose that inversion of visual images never takes place because images enter the retina as coiled and compressed graded potentials that are intensified and amplified in OFF-center photoreceptors. Once they reach the brain, they are decompressed and expanded to the original size of the image, which is perceived by the brain as the external image. We adduce that pre-existing oscillations (alpha, beta, and gamma) among the various cortices in the brain (including the striate and parietal cortex) and the retina, work together in unison to create an infrastructure of visual space thatfunctionally "places" the objects within a "neural" space. These fast oscillations "bring" the faculties of the cortical activity to the retina, creating the infrastructure of the space within the eye where visual information can be immediately recognized by the brain. By this we mean that the visual (striate) cortex synchronizes the information with the photoreceptors in the retina, and the brain instantaneously receives the already processed visual image, thereby relinquishing the eye from being required to send the information to the brain to be interpreted before it can rise to consciousness. The visual system is a heavily studied area of neuroscience yet very little is known about how vision occurs. We believe that our novel hypothesis provides new insights into how vision becomes part of consciousness, helps to reconcile various previously proposed models, and further elucidates current questions in vision based on our unified 3D default space model. Illustrations are provided to aid in explaining our theory.


Assuntos
Estado de Consciência/fisiologia , Retina/fisiologia , Visão Ocular , Encéfalo/fisiologia , Cor , Humanos , Luz , Modelos Neurológicos , Modelos Teóricos , Neurociências , Oscilometria , Células Fotorreceptoras Retinianas Cones/fisiologia , Percepção Espacial , Córtex Visual/fisiologia , Percepção Visual
10.
Adv Mind Body Med ; 29(4): 4-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26535473

RESUMO

The brain is considered to be the primary generator and regulator of emotions; however, afferent signals originating throughout the body are detected by the autonomic nervous system (ANS) and brainstem, and, in turn, can modulate emotional processes. During stress and negative emotional states, levels of cardiorespiratory coherence (CRC) decrease, and a shift occurs toward sympathetic dominance. In contrast, CRC levels increase during more positive emotional states, and a shift occurs toward parasympathetic dominance. The dynamic changes in CRC that accompany different emotions can provide insights into how the activity of the limbic system and afferent feedback manifest as emotions. The authors propose that the brainstem and CRC are involved in important feedback mechanisms that modulate emotions and higher cortical areas. That mechanism may be one of many mechanisms that underlie the physiological and neurological changes that are experienced during pranayama and meditation and may support the use of those techniques to treat various mood disorders and reduce stress.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Emoções/fisiologia , Neurofisiologia , Respiração , Ansiedade , Sistema Nervoso Autônomo/fisiologia , Tronco Encefálico/fisiologia , Humanos , Meditação , Estresse Psicológico
11.
Front Psychol ; 6: 1204, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379573

RESUMO

The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information may be filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system.

12.
Med Hypotheses ; 85(2): 153-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26003829

RESUMO

In this article, we examine phantom limb syndrome to gain insights into how the brain functions as the mind and how consciousness arises. We further explore our previously proposed consciousness model in which consciousness and body schema arise when information from throughout the body is processed by corticothalamic feedback loops and integrated by the thalamus. The parietal lobe spatially maps visual and non-visual information and the thalamus integrates and recreates this processed sensory information within a three-dimensional space termed the "3D default space." We propose that phantom limb syndrome and phantom limb pain arise when the afferent signaling from the amputated limb is lost but the neural circuits remain intact. In addition, integration of conflicting sensory information within the default 3D space and the loss of inhibitory afferent feedback to efferent motor activity from the amputated limb may underlie phantom limb pain.


Assuntos
Encéfalo/fisiopatologia , Estado de Consciência , Modelos Neurológicos , Membro Fantasma/etiologia , Membro Fantasma/fisiopatologia , Percepção Espacial , Imagem Corporal , Humanos , Sensação
14.
Appl Psychophysiol Biofeedback ; 40(2): 107-15, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25869930

RESUMO

Understanding the autonomic nervous system and homeostatic changes associated with emotions remains a major challenge for neuroscientists and a fundamental prerequisite to treat anxiety, stress, and emotional disorders. Based on recent publications, the inter-relationship between respiration and emotions and the influence of respiration on autonomic changes, and subsequent widespread membrane potential changes resulting from changes in homeostasis are discussed. We hypothesize that reversing homeostatic alterations with meditation and breathing techniques rather than targeting neurotransmitters with medication may be a superior method to address the whole body changes that occur in stress, anxiety, and depression. Detrimental effects of stress, negative emotions, and sympathetic dominance of the autonomic nervous system have been shown to be counteracted by different forms of meditation, relaxation, and breathing techniques. We propose that these breathing techniques could be used as first-line and supplemental treatments for stress, anxiety, depression, and some emotional disorders.


Assuntos
Ansiedade/terapia , Sistema Nervoso Autônomo/fisiologia , Exercícios Respiratórios/métodos , Emoções/fisiologia , Respiração , Autocontrole/psicologia , Humanos
15.
Med Hypotheses ; 84(1): 31-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25434482

RESUMO

Respiration influences various pacemakers and rhythms of the body during inspiration and expiration but the underlying mechanisms are relatively unknown. Understanding this phenomenon is important, as breathing disorders, breath holding, and hyperventilation can lead to significant medical conditions. We discuss the physiological modulation of heart rhythm, blood pressure, sympathetic nerve activity, EEG, and other changes observed during inspiration and expiration. We also correlate the intracellular mitochondrial respiratory metabolic processes with real-time breathing and correlate membrane potential changes with inspiration and expiration. We propose that widespread minor hyperpolarization occurs during inspiration and widespread minor depolarization occurs during expiration. This depolarization is likely a source of respiratory drive. Further knowledge of intracellular and extracellular ionic changes associated with respiration will enhance ourunderstanding of respiration and its role as a modulator of cellular membrane potential. This could expand treatment options for a wide range of health conditions, such as breathing disorders, stress-related disorders, and further our understanding of the Hering-Breuer reflex and respiratory sinus arrhythmia.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Expiração/fisiologia , Modelos Biológicos , Fármacos Neuromusculares Despolarizantes/metabolismo , Respiração , Humanos
16.
Conscious Cogn ; 28: 81-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25049208

RESUMO

One of the most compelling questions still unanswered in neuroscience is how consciousness arises. In this article, we examine visual processing, the parietal lobe, and contralateral neglect syndrome as a window into consciousness and how the brain functions as the mind and we introduce a mechanism for the processing of visual information and its role in consciousness. We propose that consciousness arises from integration of information from throughout the body and brain by the thalamus and that the thalamus reimages visual and other sensory information from throughout the cortex in a default three-dimensional space in the mind. We further suggest that the thalamus generates a dynamic default three-dimensional space by integrating processed information from corticothalamic feedback loops, creating an infrastructure that may form the basis of our consciousness. Further experimental evidence is needed to examine and support this hypothesis, the role of the thalamus, and to further elucidate the mechanism of consciousness.


Assuntos
Estado de Consciência/fisiologia , Percepção de Profundidade/fisiologia , Transtornos da Percepção/fisiopatologia , Tálamo/fisiologia , Humanos , Percepção Espacial/fisiologia , Síndrome , Percepção Visual/fisiologia
17.
Sleep Med ; 15(3): 279-88, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24548599

RESUMO

Although sleep physiology has been extensively studied, many of the cellular processes that occur during sleep and the functional significance of sleep remain unclear. The degree of cardiorespiratory synchronization during sleep increases during the progression of slow-wave sleep (SWS). Autonomic nervous system (ANS) activity also assumes a pattern that correlates with the progression of sleep. The ANS is an integral part of physiologic processes that occur during sleep with the respective contribution of parasympathetic and sympathetic activity varying between different sleep stages. In our paper, we attempt to unify the activities of various physiologic systems, namely the cardiac, respiratory, ANS and brain, during sleep into a consolidated picture with particular attention to the membrane potential of neurons. In our unified model, we explore the potential of sleep to promote restorative processes in the brain.


Assuntos
Coração/fisiologia , Potenciais da Membrana/fisiologia , Fenômenos Fisiológicos Respiratórios , Sono/fisiologia , Animais , Sistema Nervoso Autônomo/fisiologia , Encéfalo/fisiologia , Humanos , Fases do Sono/fisiologia
19.
Med Hypotheses ; 73(2): 163-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19364630

RESUMO

High blood pressure is an important component of pre-eclampsia. The underlying mechanism of development of hypertension in pre-eclampsia is complicated and still remains obscure. Several theories have been advanced including endothelial dysfunction, uteroplacental insufficiency leading to generalized vasoconstriction, increased cardiac output, and sympathetic hyperactivity. Increased blood flow and pressure are thought to lead to capillary dilatation, which damages end-organ sites, leading to hypertension, proteinuria and edema. Additional theories have been put forward based on epidemiological research, implicating immunological and genetic factors. None of these theories have been substantiated. Based on a review of literature this paper postulates that the initiating event for the development of pre-eclampsia is intermittent hypoxia associated with irregular breathing during sleep, hypoapnea, apnea, inadequate respiratory excursions during the waking hours and inadequate cardiopulmonary synchronization (abnormal sympatho-vagal balance).


Assuntos
Endotélio/fisiopatologia , Pré-Eclâmpsia/fisiopatologia , Respiração , Doenças Respiratórias/complicações , Feminino , Humanos , Gravidez , Terapia de Relaxamento , Sistema Renina-Angiotensina , Doenças Respiratórias/fisiopatologia , Síndromes da Apneia do Sono/complicações , Síndromes da Apneia do Sono/fisiopatologia
20.
Med Hypotheses ; 67(3): 566-71, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16624497

RESUMO

Pranayamic breathing, defined as a manipulation of breath movement, has been shown to contribute to a physiologic response characterized by the presence of decreased oxygen consumption, decreased heart rate, and decreased blood pressure, as well as increased theta wave amplitude in EEG recordings, increased parasympathetic activity accompanied by the experience of alertness and reinvigoration. The mechanism of how pranayamic breathing interacts with the nervous system affecting metabolism and autonomic functions remains to be clearly understood. It is our hypothesis that voluntary slow deep breathing functionally resets the autonomic nervous system through stretch-induced inhibitory signals and hyperpolarization currents propagated through both neural and non-neural tissue which synchronizes neural elements in the heart, lungs, limbic system and cortex. During inspiration, stretching of lung tissue produces inhibitory signals by action of slowly adapting stretch receptors (SARs) and hyperpolarization current by action of fibroblasts. Both inhibitory impulses and hyperpolarization current are known to synchronize neural elements leading to the modulation of the nervous system and decreased metabolic activity indicative of the parasympathetic state. In this paper we propose pranayama's physiologic mechanism through a cellular and systems level perspective, involving both neural and non-neural elements. This theoretical description describes a common physiological mechanism underlying pranayama and elucidate the role of the respiratory and cardiovascular system on modulating the autonomic nervous system. Along with facilitating the design of clinical breathing techniques for the treatment of autonomic nervous system and other disorders, this model will also validate pranayama as a topic requiring more research.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Exercícios Respiratórios , Respiração , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...