Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(2): 1034-1048, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785147

RESUMO

This paper presents a discontinuous Galerkin (DG) integral equation (IE) method for the electromagnetic analysis of arbitrarily-shaped plasmonic assemblies. The use of nonconformal meshes provides improved flexibility for CAD prototyping and tessellation of the input geometry. The formulation can readily address nonconformal multi-material junctions (where three or more material regions meet), allowing to set very different mesh sizes depending on the material properties of the different subsystems. It also enables the use of h-refinement techniques to improve accuracy without burdening the computational cost. The continuity of the equivalent electric and magnetic surface currents across the junction contours is enforced by a combination of boundary conditions and local, weakly imposed, interior penalties within the junction regions. A comprehensive study is made to compare the performance of different IE-DG alternatives applied to plasmonics. The numerical experiments conducted validate the accuracy and versatility of this formulation for the resolution of complex nanoparticle assemblies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...