Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 20(1): 490, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601176

RESUMO

BACKGROUND: The development of accurate epitope prediction tools is important in facilitating disease diagnostics, treatment and vaccine development. The advent of new approaches making use of antibody and TCR sequence information to predict receptor-specific epitopes have the potential to transform the epitope prediction field. Development and validation of these new generation of epitope prediction methods would benefit from regularly updated high-quality receptor-antigen complex datasets. RESULTS: To address the need for high-quality datasets to benchmark performance of these new generation of receptor-specific epitope prediction tools, a webserver called SCEptRe (Structural Complexes of Epitope-Receptor) was created. SCEptRe extracts weekly updated 3D complexes of antibody-antigen, TCR-pMHC and MHC-ligand from the Immune Epitope Database and clusters them based on antigen, receptor and epitope features to generate benchmark datasets. SCEptRe also provides annotated information such as CDR sequences and VDJ genes on the receptors. Users can generate custom datasets based by selecting thresholds for structural quality and clustering parameters (e.g. resolution, R-free factor, antigen or epitope sequence identity) based on their need. CONCLUSIONS: SCEptRe provides weekly updated, user-customized comprehensive benchmark datasets of immune receptor-epitope structural complexes. These datasets can be used to develop and benchmark performance of receptor-specific epitope prediction tools in the future. SCEptRe is freely accessible at http://tools.iedb.org/sceptre .


Assuntos
Complexo Antígeno-Anticorpo , Bases de Dados de Proteínas , Epitopos/metabolismo , Receptores Imunológicos/metabolismo , Epitopos/imunologia , Humanos , Receptores Imunológicos/imunologia
2.
Sci Rep ; 9(1): 14530, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601838

RESUMO

The interaction between the class I major histocompatibility complex (MHC), the peptide presented by the MHC and the T-cell receptor (TCR) is a key determinant of the cellular immune response. Here, we present TCRpMHCmodels, a method for accurate structural modelling of the TCR-peptide-MHC (TCR-pMHC) complex. This TCR-pMHC modelling pipeline takes as input the amino acid sequence and generates models of the TCR-pMHC complex, with a median Cα RMSD of 2.31 Å. TCRpMHCmodels significantly outperforms TCRFlexDock, a specialised method for docking pMHC and TCR structures. TCRpMHCmodels is simple to use and the modelling pipeline takes, on average, only two minutes. Thanks to its ease of use and high modelling accuracy, we expect TCRpMHCmodels to provide insights into the underlying mechanisms of TCR and pMHC interactions and aid in the development of advanced T-cell-based immunotherapies and rational design of vaccines. The TCRpMHCmodels tool is available at http://www.cbs.dtu.dk/services/TCRpMHCmodels/ .


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Modelos Moleculares , Receptores de Antígenos de Linfócitos T/química , Antígenos/química , Biologia Computacional , Bases de Dados de Proteínas , Epitopos/química , Humanos , Sistema Imunitário , Peptídeos/química , Linfócitos T/imunologia
3.
Nucleic Acids Res ; 47(W1): W502-W506, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31114900

RESUMO

The Immune Epitope Database Analysis Resource (IEDB-AR, http://tools.iedb.org/) is a companion website to the IEDB that provides computational tools focused on the prediction and analysis of B and T cell epitopes. All of the tools are freely available through the public website and many are also available through a REST API and/or a downloadable command-line tool. A virtual machine image of the entire site is also freely available for non-commercial use and contains most of the tools on the public site. Here, we describe the tools and functionalities that are available in the IEDB-AR, focusing on the 10 new tools that have been added since the last report in the 2012 NAR webserver edition. In addition, many of the tools that were already hosted on the site in 2012 have received updates to newest versions, including NetMHC, NetMHCpan, BepiPred and DiscoTope. Overall, this IEDB-AR update provides a substantial set of updated and novel features for epitope prediction and analysis.


Assuntos
Epitopos de Linfócito B/química , Epitopos de Linfócito T/química , Software , Animais , Bases de Dados de Proteínas , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Antígenos de Histocompatibilidade/metabolismo , Humanos , Camundongos
4.
Front Immunol ; 10: 298, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863406

RESUMO

B-cells can neutralize pathogenic molecules by targeting them with extreme specificity using receptors secreted or expressed on their surface (antibodies). This is achieved via molecular interactions between the paratope (i.e., the antibody residues involved in the binding) and the interacting region (epitope) of its target molecule (antigen). Discerning the rules that define this specificity would have profound implications for our understanding of humoral immunogenicity and its applications. The aim of this work is to produce improved, antibody-specific epitope predictions by exploiting features derived from the antigens and their cognate antibodies structures, and combining them using statistical and machine learning algorithms. We have identified several geometric and physicochemical features that are correlated in interacting paratopes and epitopes, used them to develop a Monte Carlo algorithm to generate putative epitopes-paratope pairs, and train a machine-learning model to score them. We show that, by including the structural and physicochemical properties of the paratope, we improve the prediction of the target of a given B-cell receptor. Moreover, we demonstrate a gain in predictive power both in terms of identifying the cognate antigen target for a given antibody and the antibody target for a given antigen, exceeding the results of other available tools.


Assuntos
Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Complexo Antígeno-Anticorpo/imunologia , Epitopos de Linfócito B/imunologia , Algoritmos , Sequência de Aminoácidos , Animais , Complexo Antígeno-Anticorpo/química , Sítios de Ligação de Anticorpos , Mapeamento de Epitopos/métodos , Humanos , Modelos Moleculares , Método de Monte Carlo , Redes Neurais de Computação , Domínios Proteicos , Reprodutibilidade dos Testes
5.
Proteins ; 87(6): 520-527, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30785653

RESUMO

The ability to predict local structural features of a protein from the primary sequence is of paramount importance for unraveling its function in absence of experimental structural information. Two main factors affect the utility of potential prediction tools: their accuracy must enable extraction of reliable structural information on the proteins of interest, and their runtime must be low to keep pace with sequencing data being generated at a constantly increasing speed. Here, we present NetSurfP-2.0, a novel tool that can predict the most important local structural features with unprecedented accuracy and runtime. NetSurfP-2.0 is sequence-based and uses an architecture composed of convolutional and long short-term memory neural networks trained on solved protein structures. Using a single integrated model, NetSurfP-2.0 predicts solvent accessibility, secondary structure, structural disorder, and backbone dihedral angles for each residue of the input sequences. We assessed the accuracy of NetSurfP-2.0 on several independent test datasets and found it to consistently produce state-of-the-art predictions for each of its output features. We observe a correlation of 80% between predictions and experimental data for solvent accessibility, and a precision of 85% on secondary structure 3-class predictions. In addition to improved accuracy, the processing time has been optimized to allow predicting more than 1000 proteins in less than 2 hours, and complete proteomes in less than 1 day.


Assuntos
Bases de Dados de Proteínas , Aprendizado Profundo , Biologia Computacional , Estrutura Secundária de Proteína , Proteoma/química
6.
Front Immunol ; 9: 2688, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515166

RESUMO

The Immune Epitope Database (IEDB) is a free public resource which catalogs experiments characterizing immune epitopes. To accommodate data from next generation repertoire sequencing experiments, we recently updated how we capture and query epitope specific antibodies and T cell receptors. Specifically, we are now storing partial receptor sequences sufficient to determine CDRs and VDJ gene usage which are commonly identified by repertoire sequencing. For previously captured full length receptor sequencing data, we have calculated the corresponding CDR sequences and gene usage information using IMGT numbering and VDJ gene nomenclature format. To integrate information from receptors defined at different levels of resolution, we grouped receptors based on their host species, receptor type and CDR3 sequence. As of August 2018, we have cataloged sequence information for more than 22,510 receptors in 18,292 receptor groups, shown to bind to more than 2,241 distinct epitopes. These data are accessible as full exports and through a new dedicated query interface. The later combines the new ability to search by receptor characteristics with previously existing capability to search by epitope characteristics such as the infectious agent the epitope is derived from, or the kind of immune response involved in its recognition. We expect that this comprehensive capture of epitope specific immune receptor information will provide new insights into receptor-epitope interactions, and facilitate the development of novel tools that help in the analysis of receptor repertoire data.


Assuntos
Anticorpos/imunologia , Especificidade de Anticorpos , Bases de Dados de Proteínas , Epitopos de Linfócito T/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Epitopos de Linfócito T/genética , Humanos , Camundongos , Receptores de Antígenos de Linfócitos T/genética
7.
Nucleic Acids Res ; 45(W1): W24-W29, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28472356

RESUMO

Antibodies have become an indispensable tool for many biotechnological and clinical applications. They bind their molecular target (antigen) by recognizing a portion of its structure (epitope) in a highly specific manner. The ability to predict epitopes from antigen sequences alone is a complex task. Despite substantial effort, limited advancement has been achieved over the last decade in the accuracy of epitope prediction methods, especially for those that rely on the sequence of the antigen only. Here, we present BepiPred-2.0 (http://www.cbs.dtu.dk/services/BepiPred/), a web server for predicting B-cell epitopes from antigen sequences. BepiPred-2.0 is based on a random forest algorithm trained on epitopes annotated from antibody-antigen protein structures. This new method was found to outperform other available tools for sequence-based epitope prediction both on epitope data derived from solved 3D structures, and on a large collection of linear epitopes downloaded from the IEDB database. The method displays results in a user-friendly and informative way, both for computer-savvy and non-expert users. We believe that BepiPred-2.0 will be a valuable tool for the bioinformatics and immunology community.


Assuntos
Epitopos de Linfócito B/química , Software , Internet , Modelos Moleculares , Muramidase/química , Muramidase/imunologia , Conformação Proteica , Análise de Sequência de Proteína , Interface Usuário-Computador
8.
Nucleic Acids Res ; 44(D1): D38-47, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538599

RESUMO

Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand.Here we present a community-driven curation effort, supported by ELIXIR-the European infrastructure for biological information-that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners.As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools.


Assuntos
Biologia Computacional , Sistema de Registros , Curadoria de Dados , Software
9.
Nucleic Acids Res ; 43(W1): W349-55, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26007650

RESUMO

The accurate structural modeling of B- and T-cell receptors is fundamental to gain a detailed insight in the mechanisms underlying immunity and in developing new drugs and therapies. The LYRA (LYmphocyte Receptor Automated modeling) web server (http://www.cbs.dtu.dk/services/LYRA/) implements a complete and automated method for building of B- and T-cell receptor structural models starting from their amino acid sequence alone. The webserver is freely available and easy to use for non-specialists. Upon submission, LYRA automatically generates alignments using ad hoc profiles, predicts the structural class of each hypervariable loop, selects the best templates in an automatic fashion, and provides within minutes a complete 3D model that can be downloaded or inspected online. Experienced users can manually select or exclude template structures according to case specific information. LYRA is based on the canonical structure method, that in the last 30 years has been successfully used to generate antibody models of high accuracy, and in our benchmarks this approach proves to achieve similarly good results on TCR modeling, with a benchmarked average RMSD accuracy of 1.29 and 1.48 Å for B- and T-cell receptors, respectively. To the best of our knowledge, LYRA is the first automated server for the prediction of TCR structure.


Assuntos
Modelos Moleculares , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos T/química , Software , Internet , Conformação Proteica , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...