Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 265, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431942

RESUMO

A multitargeted strategy to treat the consequences of ischemia and reperfusion (IR) injury in acute myocardial infarction may add cardioprotection beyond reperfusion therapy alone. We investigated the cardioprotective effect of mild hypothermia combined with local ischemic preconditioning (IPC) or remote ischemic conditioning (RIC) on IR injury in isolated rat hearts. Moreover, we aimed to define the optimum timing of initiating hypothermia and evaluate underlying cardioprotective mechanisms. Compared to infarct size in normothermic controls (56 ± 4%), mild hypothermia during the entire or final 20 min of the ischemic period reduced infarct size (34 ± 2%, p < 0.01; 35 ± 5%, p < 0.01, respectively), while no reduction was seen when hypothermia was initiated at reperfusion (51 ± 4%, p = 0.90). In all groups with effect of mild hypothermia, IPC further reduced infarct size. In contrast, we found no additive effect on infarct size between hypothermic controls (20 ± 3%) and the combination of mild hypothermia and RIC (33 ± 4%, p = 0.09). Differences in temporal lactate dehydrogenase release patterns suggested an anti-ischemic effect by mild hypothermia, while IPC and RIC preferentially targeted reperfusion injury. In conclusion, additive underlying mechanisms seem to provide an additive effect of mild hypothermia and IPC, whereas the more clinically applicable RIC does not add cardioprotection beyond mild hypothermia.


Assuntos
Hipotermia Induzida , Precondicionamento Isquêmico Miocárdico , Doença Aguda , Animais , Terapia Combinada , Infarto do Miocárdio/terapia , Ratos
2.
Sci Rep ; 10(1): 9537, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533085

RESUMO

Remote ischemic conditioning (RIC) by repetitive brief periods of limb ischemia and reperfusion renders organs more resistant to ischemic injury. The protection is partly through down-regulation of the inflammatory response. Our aim was to investigate the clinical and anti-inflammatory effects of RIC in patients with active ulcerative colitis (UC). We included 22 patients with active UC in this explorative, randomized, sham-controlled clinical trial. The patients were randomly assigned 1:1 to RIC (induced in the arm through four cycles of 5-min inflation and 5-min deflation of a blood-pressure cuff) or sham (incomplete inflation of the blood-pressure cuff) once daily for 10 days. Outcome variables were measured at baseline and on day 11. When compared with sham, RIC did not affect inflammation in the UC patients measured by fecal calprotectin, plasma C-reactive protein, Mayo Score, Mayo Endoscopic Subscore, Nancy Histological Index or inflammatory cytokines involved in UC and RIC. The mRNA and miRNA expression profiles in the UC patients were measured by RNA sequencing and multiplexed hybridization, respectively, but were not significantly affected by RIC. We used the Langendorff heart model to assess activation of the organ protective mechanism induced by RIC, but could not confirm activation of the organ protective mechanism in the UC patients.


Assuntos
Colite Ulcerativa/fisiopatologia , Colo/irrigação sanguínea , Precondicionamento Isquêmico , Adulto , Colite Ulcerativa/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Isquemia/metabolismo , Complexo Antígeno L1 Leucocitário/metabolismo , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Método Simples-Cego , Resultado do Tratamento , Adulto Jovem
3.
J Cell Mol Med ; 24(11): 5937-5954, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384583

RESUMO

Reducing infarct size during a cardiac ischaemic-reperfusion episode is still of paramount importance, because the extension of myocardial necrosis is an important risk factor for developing heart failure. Cardiac ischaemia-reperfusion injury (IRI) is in principle a metabolic pathology as it is caused by abruptly halted metabolism during the ischaemic episode and exacerbated by sudden restart of specific metabolic pathways at reperfusion. It should therefore not come as a surprise that therapy directed at metabolic pathways can modulate IRI. Here, we summarize the current knowledge of important metabolic pathways as therapeutic targets to combat cardiac IRI. Activating metabolic pathways such as glycolysis (eg AMPK activators), glucose oxidation (activating pyruvate dehydrogenase complex), ketone oxidation (increasing ketone plasma levels), hexosamine biosynthesis pathway (O-GlcNAcylation; administration of glucosamine/glutamine) and deacetylation (activating sirtuins 1 or 3; administration of NAD+ -boosting compounds) all seem to hold promise to reduce acute IRI. In contrast, some metabolic pathways may offer protection through diminished activity. These pathways comprise the malate-aspartate shuttle (in need of novel specific reversible inhibitors), mitochondrial oxygen consumption, fatty acid oxidation (CD36 inhibitors, malonyl-CoA decarboxylase inhibitors) and mitochondrial succinate metabolism (malonate). Additionally, protecting the cristae structure of the mitochondria during IR, by maintaining the association of hexokinase II or creatine kinase with mitochondria, or inhibiting destabilization of FO F1 -ATPase dimers, prevents mitochondrial damage and thereby reduces cardiac IRI. Currently, the most promising and druggable metabolic therapy against cardiac IRI seems to be the singular or combined targeting of glycolysis, O-GlcNAcylation and metabolism of ketones, fatty acids and succinate.


Assuntos
Terapia de Alvo Molecular , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Animais , Metabolismo Energético , Humanos , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/patologia
4.
Am J Transplant ; 20(9): 2425-2436, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32282984

RESUMO

We investigated metabolic changes during brain death (BD) using hyperpolarized magnetic resonance (MR) spectroscopy and ex vivo graft glucose metabolism during normothermic isolated perfused kidney (IPK) machine perfusion. BD was induced in mechanically ventilated rats by inflation of an epidurally placed catheter; sham-operated rats served as controls. Hyperpolarized [1-13 C]pyruvate MR spectroscopy was performed to quantify pyruvate metabolism in the liver and kidneys at 3 time points during BD, preceded by injecting hyperpolarized[1-13 C]pyruvate. Following BD, glucose oxidation was measured using tritium-labeled glucose (d-6-3H-glucose) during IPK reperfusion. Quantitative polymerase chain reaction and biochemistry were performed on tissue/plasma. Immediately following BD induction, lactate increased in both organs (liver: eµd 0.21, 95% confidence interval [CI] [-0.27, -0.15]; kidney: eµd 0.26, 95% CI [-0.40, -0.12]. After 4 hours of BD, alanine production decreased in the kidney (eµd 0.14, 95% CI [0.03, 0.25], P < .05). Hepatic lactate and alanine profiles were significantly different throughout the experiment between groups (P < .01). During IPK perfusion, renal glucose oxidation was reduced following BD vs sham animals (eµd 0.012, 95% CI [0.004, 0.03], P < .001). No differences in enzyme activities were found. Renal gene expression of lactate-transporter MCT4 increased following BD (P < .01). In conclusion, metabolic processes during BD can be visualized in vivo using hyperpolarized magnetic resonance imaging and with glucose oxidation during ex vivo renal machine perfusion. These techniques can detect differences in the metabolic profiles of the liver and kidney following BD.


Assuntos
Morte Encefálica , Preservação de Órgãos , Animais , Rim/metabolismo , Fígado , Metaboloma , Perfusão , Ratos
5.
Circ Heart Fail ; 12(12): e006427, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830830

RESUMO

BACKGROUND: Patients with congestive heart failure (CHF) have impaired functional capacity and inferior quality of life. The clinical manifestations are associated with structural and functional impairments in skeletal muscle, emphasizing a need for feasible rehabilitation strategies beyond optimal anticongestive medical treatment. We investigated whether low-load blood flow restricted resistance exercise (BFRRE) or remote ischemic conditioning (RIC) could improve functional capacity and quality of life in patients with CHF and stimulate skeletal muscle myofibrillar and mitochondrial adaptations. METHODS: We randomized 36 patients with CHF to BFRRE, RIC, or nontreatment control. BFRRE and RIC were performed 3× per week for 6 weeks. Before and after intervention, muscle biopsies, tests of functional capacity, and quality of life assessments were performed. Deuterium oxide was administered throughout the intervention to measure cumulative RNA and subfraction protein synthesis. Changes in muscle fiber morphology and mitochondrial respiratory function were also assessed. RESULTS: BFRRE improved 6-minute walk test by 39.0 m (CI, 7.0-71.1, P=0.019) compared with control. BFRRE increased maximum isometric strength by 29.7 Nm (CI, 10.8-48.6, P=0.003) compared with control. BFRRE improved quality of life by 5.4 points (CI, -0.04 to 10.9; P=0.052) compared with control. BFRRE increased mitochondrial function by 19.1 pmol/s per milligram (CI, 7.3-30.8; P=0.002) compared with control. RIC did not produce similar changes. CONCLUSIONS: Our results demonstrate that BFRRE, but not RIC, improves functional capacity, quality of life, and muscle mitochondrial function. Our findings have clinical implications for rehabilitation of patients with CHF and provide new insights on the myopathy accompanying CHF. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT03380663.


Assuntos
Braço/irrigação sanguínea , Tolerância ao Exercício , Insuficiência Cardíaca/terapia , Precondicionamento Isquêmico , Músculo Esquelético/fisiopatologia , Treinamento Resistido , Oclusão Terapêutica , Coxa da Perna/irrigação sanguínea , Adaptação Fisiológica , Idoso , Dinamarca , Feminino , Nível de Saúde , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Precondicionamento Isquêmico/efeitos adversos , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Qualidade de Vida , Recuperação de Função Fisiológica , Fluxo Sanguíneo Regional , Treinamento Resistido/efeitos adversos , Oclusão Terapêutica/efeitos adversos , Fatores de Tempo , Resultado do Tratamento
6.
Front Physiol ; 9: 1796, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618808

RESUMO

Purpose: It is well established that high-load resistance exercise (HLRE) can stimulate myofibrillar accretion. Additionally, recent studies suggest that HLRE can also stimulate mitochondrial biogenesis and respiratory function. However, in several clinical situations, the use of resistance exercise with high loading may not constitute a viable approach. Low-load blood flow restricted resistance exercise (BFRRE) has emerged as a time-effective low-load alternative to stimulate myofibrillar accretion. It is unknown if BFRRE can also stimulate mitochondrial biogenesis and respiratory function. If so, BFRRE could provide a feasible strategy to stimulate muscle metabolic health. Methods: To study this, 34 healthy previously untrained individuals (24 ± 3 years) participated in BFRRE, HLRE, or non-exercise control intervention (CON) 3 times per week for 6 weeks. Skeletal muscle biopsies were collected; (1) before and after the 6-week intervention period to assess mitochondrial biogenesis and respiratory function and; (2) during recovery from single-bout exercise to assess myocellular signaling events involved in transcriptional regulation of mitochondrial biogenesis. During the 6-week intervention period, deuterium oxide (D2O) was continuously administered to the participants to label newly synthesized skeletal muscle mitochondrial proteins. Mitochondrial respiratory function was assessed in permeabilized muscle fibers with high-resolution respirometry. Mitochondrial content was assessed with a citrate synthase activity assay. Myocellular signaling was assessed with immunoblotting. Results: Mitochondrial protein synthesis rate was higher with BFRRE (1.19%/day) and HLRE (1.15%/day) compared to CON (0.92%/day) (P < 0.05) but similar between exercise groups. Mitochondrial respiratory function increased to similar degree with both exercise regimens and did not change with CON. For instance, coupled respiration supported by convergent electron flow from complex I and II increased 38% with BFRRE and 24% with HLRE (P < 0.01). Training did not alter citrate synthase activity compared to CON. BFRRE and HLRE elicited similar myocellular signaling responses. Conclusion: These results support recent findings that resistance exercise can stimulate mitochondrial biogenesis and respiratory function to support healthy skeletal muscle and whole-body metabolism. Intriquingly, BFRRE produces similar mitochondrial adaptations at a markedly lower load, which entail great clinical perspective for populations in whom exercise with high loading is untenable.

7.
Cardiovasc Diabetol ; 16(1): 148, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29121919

RESUMO

BACKGROUND: Hypoglycemia is associated with increased mortality rate in patients with diabetes. The underlying mechanisms may involve reduced myocardial tolerance to ischemia and reperfusion (IR) or reduced capacity for ischemic preconditioning (IPC). As IPC is associated with increased myocardial glucose uptake (MGU) during reperfusion, cardioprotection is linked to glucose metabolism possibly by O-linked ß-N-acetylglucosamine (O-GlcNAc). We aimed to investigate the impact of hypoglycemia in hearts from animals with diabetes on myocardial IR tolerance, on the efficacy of IPC and whether modulations of MGU and O-GlcNAc levels are involved in the underlying mechanisms. METHODS: In a Langendorff model using diabetic ZDF (fa/fa) and non-diabetic (fa/+) rats (n = 6-7 in each group) infarct size (IS) was evaluated after 40 min of global ischemia and 120 min reperfusion during hypoglycemia [(glucose) = 3 mmol/l] and normoglycemia [(glucose) = 11 mmol/l]. Myocardial glucose uptake and O-GlcNAc levels were evaluated during reperfusion. IPC was induced by 2 × 5 min of global ischemia prior to index ischemia. RESULTS: IS increased in hearts from animals with (p < 0.01) and without (p < 0.01) diabetes during hypoglycemia compared to normoglycemia. IPC reduced IS during normoglycemia in both animals with (p < 0.01) and without (p < 0.01) diabetes. During hypoglycemia, however, IPC only reduced IS in hearts from animals with diabetes (p < 0.05). IPC increased MGU during reperfusion and O-GlcNAc levels in animals with diabetes during hypo- (MGU: p < 0.05, O-GlcNAc: p < 0.05) and normoglycemia (MGU: p < 0.01, O-GlcNAc: p < 0.05) and in animals without diabetes only during normoglycemia (MGU: p < 0.05, O-GlcNAc: p < 0.01). CONCLUSIONS: Hypoglycemia increases myocardial susceptibility to IR injury in hearts from animals with and without diabetes. In contrast to hearts from animals without diabetes, the hearts from animals with diabetes are amenable to cardioprotection during hypoglycemia. In parallel with IPC induced cardioprotection, MGU and O-GlcNAc levels increase suggesting that increased MGU and O-GlcNAc levels are involved in the mechanisms of IPC.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Hipoglicemia/patologia , Precondicionamento Isquêmico Miocárdico/métodos , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Animais , Diabetes Mellitus Tipo 2/sangue , Coração/fisiologia , Hipoglicemia/sangue , Hipoglicemia/complicações , Preparação de Coração Isolado/métodos , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/etiologia , Miocárdio/metabolismo , Ratos , Ratos Zucker
8.
J Pharmacol Exp Ther ; 357(1): 94-102, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26869667

RESUMO

The voltage-gated KV7 (KCNQ) potassium channels are activated by ischemia and involved in hypoxic vasodilatation. We investigated the effect of KV7 channel modulation on cardiac ischemia and reperfusion injury and its interaction with cardioprotection by ischemic preconditioning (IPC). Reverse-transcription polymerase chain reaction revealed expression of KV7.1, KV7.4, and KV7.5 in the left anterior descending rat coronary artery and all KV7 subtypes (KV7.1-KV7.5) in the left and right ventricles of the heart. Isolated hearts were subjected to no-flow global ischemia and reperfusion with and without IPC. Infarct size was quantified by 2,3,5-triphenyltetrazolium chloride staining. Two blockers of KV7 channels, XE991 [10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone] (10 µM) and linopirdine (10 µM), reduced infarct size and exerted additive infarct reduction to IPC. An opener of KV7 channels, flupirtine (10 µM) abolished infarct size reduction by IPC. Hemodynamics were measured using a catheter inserted in the left ventricle and postischemic left ventricular recovery improved in accordance with reduction of infarct size and deteriorated with increased infarct size. XE991 (10 µM) reduced coronary flow in the reperfusion phase and inhibited vasodilatation in isolated small branches of the left anterior descending coronary artery during both simulated ischemia and reoxygenation. KV7 channels are expressed in rat coronary arteries and myocardium. Inhibition of KV7 channels exerts cardioprotection and opening of KV7 channels abrogates cardioprotection by IPC. Although safety issues should be further addressed, our findings suggest a potential role for KV7 blockers in the treatment of ischemia-reperfusion injury.


Assuntos
Canais de Potássio KCNQ/antagonistas & inibidores , Isquemia Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Bloqueadores dos Canais de Potássio/farmacologia , Aminopiridinas/uso terapêutico , Animais , Antracenos/uso terapêutico , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Indóis/uso terapêutico , Precondicionamento Isquêmico Miocárdico , Canais de Potássio KCNQ/agonistas , Canais de Potássio KCNQ/genética , Masculino , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Miocárdio/metabolismo , Piridinas/uso terapêutico , Ratos , Ratos Wistar , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...