Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256054

RESUMO

BackgroundIndividuals with coronavirus disease 2019 (COVID-19) may have persistent symptoms following their acute illness. The prevalence and predictors of these symptoms, termed post-acute sequelae of SARS-CoV-2 (PASC), are not fully described. MethodsParticipants discharged from an outpatient telemedicine program for COVID-19 were emailed a survey (1-6 months after discharge) about ongoing symptoms, acute illness severity, and quality of life. Standardized telemedicine notes from acute illness were used for covariates (comorbidities and provider-assessed symptom severity). Bivariate and multivariable analyses were performed to assess predictors of persistent symptoms. ResultsTwo hundred and ninety patients completed the survey, of whom 115 (39.7%) reported persistent symptoms including fatigue (n= 59, 20.3%), dyspnea on exertion (n=41, 14.1%), and mental fog (n=39, 13.5%) among others. Proportion of persistent symptoms did not differ based on duration since illness (<90 days: n=32, 37.2% versus >90 days: n=80, 40.4%, p = 0.61). Predictors of persistent symptoms included provider-assessed moderate-severe illness (aOR 3.24, 95% CI 1.75, 6.02), female sex (aOR 1.99 95% 0.98, 4.04; >90 days out: aOR 2.24 95% CI 1.01, 4.95), and middle age (aOR 2.08 95% CI 1.07, 4.03). Common symptoms associated with reports of worse physical health included weakness, fatigue, myalgias, and mental fog. ConclusionsSymptoms following acute COVID-19 are common and may be predicted by factors during the acute phase of illness. Fatigue and neuropsychiatric symptoms figured prominently. Select symptoms seem to be particularly associated with perceptions of physical health following COVID-19 and warrant specific attention on future studies of PASC.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20112300

RESUMO

Non-invasive SARS-CoV-2 antibody testing is urgently needed to estimate the incidence and prevalence of SARS-CoV-2 infection at the general population level. Precise knowledge of population immunity could allow government bodies to make informed decisions about how and when to relax stay-at-home directives and to reopen the economy. We hypothesized that salivary antibodies to SARS-CoV-2 could serve as a non-invasive alternative to serological testing for widespread monitoring of SARS-CoV-2 infection throughout the population. We developed a multiplex SARS-CoV-2 antibody immunoassay based on Luminex technology and tested 167 saliva and 324 serum samples, including 134 and 118 negative saliva and serum samples, respectively, collected before the COVID-19 pandemic, and 33 saliva and 206 serum samples from participants with RT-PCR-confirmed SARS-CoV-2 infection. We evaluated the correlation of results obtained in saliva vs. serum and determined the sensitivity and specificity for each diagnostic media, stratified by antibody isotype, for detection of SARS-CoV-2 infection based on COVID-19 case designation for all specimens. Matched serum and saliva SARS-CoV-2 antigen-specific IgG responses were significantly correlated. Within the 10-plex SARS-CoV-2 panel, the salivary anti-nucleocapsid (N) protein IgG response resulted in the highest sensitivity for detecting prior SARS-CoV-2 infection (100% sensitivity at [≥]10 days post-SARS-CoV-2 symptom onset). The salivary anti-receptor binding domain (RBD) IgG response resulted in 100% specificity. Among individuals with SARS-CoV-2 infection confirmed with RT-PCR, the temporal kinetics of IgG, IgA, and IgM in saliva were consistent with those observed in serum. SARS-CoV-2 appears to trigger a humoral immune response resulting in the almost simultaneous rise of IgG, IgM and IgA levels both in serum and in saliva, mirroring responses consistent with the stimulation of existing, cross-reactive B cells. SARS-CoV-2 antibody testing in saliva can play a critically important role in large-scale "sero"-surveillance to address key public health priorities and guide policy and decision-making for COVID-19. 40-word summaryA multiplex immunoassay to detect SARS-CoV-2-specific antibodies in saliva performs with high diagnostic accuracy as early as ten days post-COVID-19 symptom onset. Highly sensitive and specific salivary COVID-19 antibody assays could advance broad immuno-surveillance goals in the USA and globally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...