Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 122(Pt 23): 4287-95, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19887585

RESUMO

At least 17 members of the protein disulphide isomerase (PDI) family of oxidoreductases are present in the endoplasmic reticulum (ER) of mammalian cells. They are thought to catalyse disulphide formation to aid folding or to regulate protein function; however, little is known about their individual functions. Here, we show that some proteins that enter the ER are clients for single oxidoreductases, whereas others are clients for several PDI-like enzymes. We previously identified potential substrates for ERp57, and here identify substrates for ERp18 and ERp46. In addition, we analysed the specificity of substrates towards PDI, ERp72, ERp57, ERp46, ERp18 and P5. Strikingly, ERp18 shows specificity towards a component of the complement cascade, pentraxin-related protein PTX3, whereas ERp46 has specificity towards peroxiredoxin-4, a thioredoxin peroxidase. By contrast, most PDI family members react with Ero1alpha. Moreover, P5 forms a non-covalent complex with immunoglobulin heavy chain binding protein (BiP) and shows specificity towards BiP client proteins. These findings highlight cooperation between BiP and P5, and demonstrate that individual PDI family members recognise specific substrate proteins.


Assuntos
Isomerases de Dissulfetos de Proteínas/metabolismo , Western Blotting , Linhagem Celular , Eletroforese em Gel Bidimensional , Retículo Endoplasmático/metabolismo , Humanos , Ligação Proteica , Proteína Dissulfeto Redutase (Glutationa)/genética , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Especificidade por Substrato
2.
J Biol Chem ; 284(4): 2194-202, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19054761

RESUMO

The formation of disulfides within proteins entering the secretory pathway is catalyzed by the protein disulfide isomerase family of endoplasmic reticulum localized oxidoreductases. One such enzyme, ERp57, is thought to catalyze the isomerization of non-native disulfide bonds formed in glycoproteins with unstructured disulfide-rich domains. Here we investigated the mechanism underlying ERp57 specificity toward glycoprotein substrates and the interdependence of ERp57 and the calnexin cycle for their correct folding. Our results clearly show that ERp57 must be physically associated with the calnexin cycle to catalyze isomerization reactions with most of its substrates. In addition, some glycoproteins only require ERp57 for correct disulfide formation if they enter the calnexin cycle. Hence, the specificity of ER oxidoreductases is not only determined by the physical association of enzyme and substrate but also by accessory factors, such as calnexin and calreticulin in the case of ERp57. These conclusions suggest that the calnexin cycle has evolved with a specialized oxidoreductase to facilitate native disulfide formation in complex glycoproteins.


Assuntos
Calnexina/metabolismo , Calreticulina/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Linhagem Celular , Dissulfetos/metabolismo , Humanos , Integrina beta1/metabolismo , Camundongos , Camundongos Knockout , Mutação/genética , Oxirredução , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/deficiência , Isomerases de Dissulfetos de Proteínas/genética , Dobramento de Proteína , Especificidade por Substrato
3.
J Biol Chem ; 283(4): 1862-9, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18039656

RESUMO

The assembly and peptide loading of major histocompatibility complex Class I molecules within the endoplasmic reticulum are essential for antigen presentation at the cell surface and are facilitated by the peptide-loading complex. The formation of a mixed disulfide between the heavy chain of Class I and components of the loading complex (ERp57, protein disulfide isomerase, and tapasin) suggests that these molecules are involved in the redox regulation of components during assembly and peptide loading. We demonstrate here that a disulfide formed between heavy chain and tapasin can occur between cysteine residues located in the cytosolic regions of these proteins following translation of heavy chain in an in vitro translation system. The formation of this disulfide occurs after assembly into the loading complex and is coincident with the stabilization of the alpha2 disulfide bond within the peptide binding grove. A ternary complex between heavy chain, ERp57, and tapasin was observed and shown to be stabilized by a disulfide between both tapasinheavy chain and tapasin-ERp57. No disulfides were observed between ERp57 and heavy chain within the loading complex. The results provide a detailed evaluation of the various transient disulfides formed within the peptide-loading complex during biosynthesis. In addition, the absence of the disulfide between tapasin and heavy chain in TAP-deficient cells indicates that a change in the spatial organization of tapasin and heavy chain occurs following assembly into the loading complex.


Assuntos
Apresentação de Antígeno/imunologia , Retículo Endoplasmático/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Proteínas de Membrana Transportadoras/imunologia , Complexos Multiproteicos/imunologia , Isomerases de Dissulfetos de Proteínas/imunologia , Linhagem Celular , Sistema Livre de Células , Dissulfetos/imunologia , Retículo Endoplasmático/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Complexos Multiproteicos/genética , Oxirredução , Biossíntese de Proteínas , Isomerases de Dissulfetos de Proteínas/genética
4.
Biochem J ; 404(3): 403-11, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17331072

RESUMO

The discovery that the flavoprotein oxidase, Erv2p, provides oxidizing potential for disulfide bond formation in yeast, has led to investigations into the roles of the mammalian homologues of this protein. Mammalian homologues of Erv2p include QSOX (sulfhydryl oxidases) from human lung fibroblasts, guinea-pig endometrial cells and rat seminal vesicles. In the present study we show that, when expressed in mammalian cells, the longer version of human QSOX1 protein (hQSOX1a) is a transmembrane protein localized primarily to the Golgi apparatus. We also present the first evidence showing that hQSOX1a can act in vivo as an oxidase. Overexpression of hQSOX1a suppresses the lethality of a complete deletion of ERO1 (endoplasmic reticulum oxidase 1) in yeast and restores disulfide bond formation, as assayed by the folding of the secretory protein carboxypeptidase Y.


Assuntos
Dissulfetos/metabolismo , Tiorredoxinas/metabolismo , Animais , Antineoplásicos/metabolismo , Catepsina A/metabolismo , Linhagem Celular , Cricetinae , Ditiotreitol/metabolismo , Retículo Endoplasmático/metabolismo , Teste de Complementação Genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Complexo de Golgi/enzimologia , Humanos , Nocodazol/metabolismo , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Isomerases de Dissulfetos de Proteínas , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/genética , Ativador de Plasminogênio Tecidual/química , Ativador de Plasminogênio Tecidual/metabolismo
5.
EMBO J ; 26(1): 28-40, 2007 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-17170699

RESUMO

ERp57 is a member of the protein disulphide isomerase family of oxidoreductases, which are involved in native disulphide bond formation in the endoplasmic reticulum of mammalian cells. This enzyme has been shown to be associated with both calnexin and calreticulin and, therefore, has been proposed to be a glycoprotein-specific oxidoreductase. Here, we identify endogenous substrates for ERp57 by trapping mixed disulphide intermediates between enzyme and substrate. Our results demonstrate that the substrates for this enzyme are mostly heavily glycosylated, disulphide bonded proteins. In addition, we show that the substrate proteins share common structural domains, indicating that substrate specificity may involve specific structural features as well as the presence of an oligosaccharide side chain. We also show that the folding of two of the endogenous substrates for ERp57 is impaired in ERp57 knockout cells and that prevention of an interaction with calnexin or calreticulin perturbs the folding of some, but not all, substrates with multiple disulphide bonds. These results suggest a specific role for ERp57 in the isomerisation of non-native disulphide bonds in specific glycoprotein substrates.


Assuntos
Glicoproteínas/química , Isomerases de Dissulfetos de Proteínas/fisiologia , Animais , Calnexina/química , Calreticulina/química , Clusterina/química , Dissulfetos/química , Eletroforese em Gel Bidimensional , Humanos , Oxigênio/química , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/química , Dobramento de Proteína , Estrutura Terciária de Proteína , Coelhos , Especificidade por Substrato
6.
EMBO Rep ; 7(3): 271-5, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16607396

RESUMO

Glutathione is a ubiquitous molecule found in all parts of the cell where it fulfils a range of functions from detoxification to protection from oxidative damage. It provides the main redox buffer for cells and as such has been implicated in the formation of native disulphide bonds. However, the discovery of the enzyme Ero1 has called into question the exact role of glutathione in this process. In this review, we discuss the arguments for and against a role for glutathione in facilitating disulphide-bond formation and consider its role in protecting the cell from endoplasmic-reticulum-generated oxidative stress.


Assuntos
Dissulfetos/metabolismo , Retículo Endoplasmático/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Animais , Glicoproteínas/metabolismo , Oxidantes/metabolismo , Oxirredução , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
J Biol Chem ; 279(53): 55341-7, 2004 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-15507438

RESUMO

The formation of disulfide bonds is an essential step in the folding of many glycoproteins and secretory proteins. Non-native disulfide bonds are often formed between incorrect cysteine residues, and thus the cell has dedicated a family of oxidoreductases that are thought to isomerize non-native bonds. For an oxidoreductase to be capable of performing isomerization or reduction reactions, it must be maintained in a reduced state. Here we show that most of the oxidoreductases are predominantly reduced in vivo. Following oxidative stress the oxidoreductases are quickly reduced, demonstrating that a robust reductive pathway is in place in mammalian cells. Using ERp57 as a model we show that the reductive pathway is cytosol-dependent and that the component responsible for the reduction of the oxidoreductases is the low molecular mass thiol glutathione. In addition, ERp57 is not reduced following oxidative stress when inhibitors of glutathione synthesis or glutathione reduction are added to cells. Glutathione directly reduces ERp57 at physiological concentrations in vitro, and biotinylated glutathione forms a mixed disulfide with ERp57 in microsomes. Our results demonstrate that glutathione plays a direct role in the isomerization of disulfide bonds by maintaining the mammalian oxidoreductases in a reduced state.


Assuntos
Retículo Endoplasmático/enzimologia , Glutationa/fisiologia , Oxirredutases/metabolismo , Animais , Biotinilação , Citosol/metabolismo , Dissulfetos , Eletroforese em Gel de Poliacrilamida , Fibrossarcoma/metabolismo , Glutationa/química , Glutationa/metabolismo , Glicoproteínas/química , Proteínas de Choque Térmico/fisiologia , Humanos , Isomerases/fisiologia , Microssomos/metabolismo , Oxirredução , Estresse Oxidativo , Oxigênio/química , Isomerases de Dissulfetos de Proteínas , Compostos de Sulfidrila , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...