Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACC Clin Electrophysiol ; 10(5): 956-966, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703162

RESUMO

BACKGROUND: Prediction of drug-induced long QT syndrome (diLQTS) is of critical importance given its association with torsades de pointes. There is no reliable method for the outpatient prediction of diLQTS. OBJECTIVES: This study sought to evaluate the use of a convolutional neural network (CNN) applied to electrocardiograms (ECGs) to predict diLQTS in an outpatient population. METHODS: We identified all adult outpatients newly prescribed a QT-prolonging medication between January 1, 2003, and March 31, 2022, who had a 12-lead sinus ECG in the preceding 6 months. Using risk factor data and the ECG signal as inputs, the CNN QTNet was implemented in TensorFlow to predict diLQTS. RESULTS: Models were evaluated in a held-out test dataset of 44,386 patients (57% female) with a median age of 62 years. Compared with 3 other models relying on risk factors or ECG signal or baseline QTc alone, QTNet achieved the best (P < 0.001) performance with a mean area under the curve of 0.802 (95% CI: 0.786-0.818). In a survival analysis, QTNet also had the highest inverse probability of censorship-weighted area under the receiver-operating characteristic curve at day 2 (0.875; 95% CI: 0.848-0.904) and up to 6 months. In a subgroup analysis, QTNet performed best among males and patients ≤50 years or with baseline QTc <450 ms. In an external validation cohort of solely suburban outpatient practices, QTNet similarly maintained the highest predictive performance. CONCLUSIONS: An ECG-based CNN can accurately predict diLQTS in the outpatient setting while maintaining its predictive performance over time. In the outpatient setting, our model could identify higher-risk individuals who would benefit from closer monitoring.


Assuntos
Inteligência Artificial , Eletrocardiografia , Síndrome do QT Longo , Redes Neurais de Computação , Humanos , Feminino , Masculino , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/diagnóstico , Pessoa de Meia-Idade , Idoso , Adulto , Fatores de Risco
2.
Artigo em Inglês | MEDLINE | ID: mdl-38518758

RESUMO

BACKGROUND: Myocardial infarction and heart failure are major cardiovascular diseases that affect millions of people in the US with the morbidity and mortality being highest among patients who develop cardiogenic shock. Early recognition of cardiogenic shock allows prompt implementation of treatment measures. Our objective is to develop a new dynamic risk score, called CShock, to improve early detection of cardiogenic shock in cardiac intensive care unit (ICU). METHODS: We developed and externally validated a deep learning-based risk stratification tool, called CShock, for patients admitted into the cardiac ICU with acute decompensated heart failure and/or myocardial infarction to predict onset of cardiogenic shock. We prepared a cardiac ICU dataset using MIMIC-III database by annotating with physician adjudicated outcomes. This dataset that consisted of 1500 patients with 204 having cardiogenic/mixed shock was then used to train CShock. The features used to train the model for CShock included patient demographics, cardiac ICU admission diagnoses, routinely measured laboratory values and vital signs, and relevant features manually extracted from echocardiogram and left heart catheterization reports. We externally validated the risk model on the New York University (NYU) Langone Health cardiac ICU database that was also annotated with physician adjudicated outcomes. The external validation cohort consisted of 131 patients with 25 patients experiencing cardiogenic/mixed shock. RESULTS: CShock achieved an area under the receiver operator characteristic curve (AUROC) of 0.821 (95% CI 0.792-0.850). CShock was externally validated in the more contemporary NYU cohort and achieved an AUROC of 0.800 (95% CI 0.717-0.884), demonstrating its generalizability in other cardiac ICUs. Having an elevated heart rate is most predictive of cardiogenic shock development based on Shapley values. The other top ten predictors are having an admission diagnosis of myocardial infarction with ST-segment elevation, having an admission diagnosis of acute decompensated heart failure, Braden Scale, Glasgow Coma Scale, Blood urea nitrogen, Systolic blood pressure, Serum chloride, Serum sodium, and Arterial blood pH. CONCLUSIONS: The novel CShock score has the potential to provide automated detection and early warning for cardiogenic shock and improve the outcomes for the millions of patients who suffer from myocardial infarction and heart failure.

3.
medRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405784

RESUMO

Importance: Large language models (LLMs) are crucial for medical tasks. Ensuring their reliability is vital to avoid false results. Our study assesses two state-of-the-art LLMs (ChatGPT and LlaMA-2) for extracting clinical information, focusing on cognitive tests like MMSE and CDR. Objective: Evaluate ChatGPT and LlaMA-2 performance in extracting MMSE and CDR scores, including their associated dates. Methods: Our data consisted of 135,307 clinical notes (Jan 12th, 2010 to May 24th, 2023) mentioning MMSE, CDR, or MoCA. After applying inclusion criteria 34,465 notes remained, of which 765 underwent ChatGPT (GPT-4) and LlaMA-2, and 22 experts reviewed the responses. ChatGPT successfully extracted MMSE and CDR instances with dates from 742 notes. We used 20 notes for fine-tuning and training the reviewers. The remaining 722 were assigned to reviewers, with 309 each assigned to two reviewers simultaneously. Inter-rater-agreement (Fleiss' Kappa), precision, recall, true/false negative rates, and accuracy were calculated. Our study follows TRIPOD reporting guidelines for model validation. Results: For MMSE information extraction, ChatGPT (vs. LlaMA-2) achieved accuracy of 83% (vs. 66.4%), sensitivity of 89.7% (vs. 69.9%), true-negative rates of 96% (vs 60.0%), and precision of 82.7% (vs 62.2%). For CDR the results were lower overall, with accuracy of 87.1% (vs. 74.5%), sensitivity of 84.3% (vs. 39.7%), true-negative rates of 99.8% (98.4%), and precision of 48.3% (vs. 16.1%). We qualitatively evaluated the MMSE errors of ChatGPT and LlaMA-2 on double-reviewed notes. LlaMA-2 errors included 27 cases of total hallucination, 19 cases of reporting other scores instead of MMSE, 25 missed scores, and 23 cases of reporting only the wrong date. In comparison, ChatGPT's errors included only 3 cases of total hallucination, 17 cases of wrong test reported instead of MMSE, and 19 cases of reporting a wrong date. Conclusions: In this diagnostic/prognostic study of ChatGPT and LlaMA-2 for extracting cognitive exam dates and scores from clinical notes, ChatGPT exhibited high accuracy, with better performance compared to LlaMA-2. The use of LLMs could benefit dementia research and clinical care, by identifying eligible patients for treatments initialization or clinical trial enrollments. Rigorous evaluation of LLMs is crucial to understanding their capabilities and limitations.

4.
Proc Mach Learn Res ; 130: 1459-1467, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33954293

RESUMO

While the need for interpretable machine learning has been established, many common approaches are slow, lack fidelity, or hard to evaluate. Amortized explanation methods reduce the cost of providing interpretations by learning a global selector model that returns feature importances for a single instance of data. The selector model is trained to optimize the fidelity of the interpretations, as evaluated by a predictor model for the target. Popular methods learn the selector and predictor model in concert, which we show allows predictions to be encoded within interpretations. We introduce EVAL-X as a method to quantitatively evaluate interpretations and REAL-X as an amortized explanation method, which learn a predictor model that approximates the true data generating distribution given any subset of the input. We show EVAL-X can detect when predictions are encoded in interpretations and show the advantages of REAL-X through quantitative and radiologist evaluation.

6.
JAMIA Open ; 3(2): 243-251, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32734165

RESUMO

OBJECTIVE: One primary consideration when developing predictive models is downstream effects on future model performance. We conduct experiments to quantify the effects of experimental design choices, namely cohort selection and internal validation methods, on (estimated) real-world model performance. MATERIALS AND METHODS: Four years of hospitalizations are used to develop a 1-year mortality prediction model (composite of death or initiation of hospice care). Two common methods to select appropriate patient visits from their encounter history (backwards-from-outcome and forwards-from-admission) are combined with 2 testing cohorts (random and temporal validation). Two models are trained under otherwise identical conditions, and their performances compared. Operating thresholds are selected in each test set and applied to a "real-world" cohort of labeled admissions from another, unused year. RESULTS: Backwards-from-outcome cohort selection retains 25% of candidate admissions (n = 23 579), whereas forwards-from-admission selection includes many more (n = 92 148). Both selection methods produce similar performances when applied to a random test set. However, when applied to the temporally defined "real-world" set, forwards-from-admission yields higher areas under the ROC and precision recall curves (88.3% and 56.5% vs. 83.2% and 41.6%). DISCUSSION: A backwards-from-outcome experiment manipulates raw training data, simplifying the experiment. This manipulated data no longer resembles real-world data, resulting in optimistic estimates of test set performance, especially at high precision. In contrast, a forwards-from-admission experiment with a temporally separated test set consistently and conservatively estimates real-world performance. CONCLUSION: Experimental design choices impose bias upon selected cohorts. A forwards-from-admission experiment, validated temporally, can conservatively estimate real-world performance. LAY SUMMARY: The routine care of patients stands to benefit greatly from assistive technologies, including data-driven risk assessment. Already, many different machine learning and artificial intelligence applications are being developed from complex electronic health record data. To overcome challenges that arise from such data, researchers often start with simple experimental approaches to test their work. One key component is how patients (and their healthcare visits) are selected for the study from the pool of all patients seen. Another is how the group of patients used to create the risk estimator differs from the group used to evaluate how well it works. These choices complicate how the experimental setting compares to the real-world application to patients. For example, different selection approaches that depend on each patient's future outcome can simplify the experiment but are impractical upon implementation as these data are unavailable. We show that this kind of "backwards" experiment optimistically estimates how well the model performs. Instead, our results advocate for experiments that select patients in a "forwards" manner and "temporal" validation that approximates training on past data and implementing on future data. More robust results help gauge the clinical utility of recent works and aid decision-making before implementation into practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...