Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38777946

RESUMO

PURPOSE: Calibration of an optical see-through head-mounted display is critical for augmented reality-based surgical navigation. While conventional methods have advanced, calibration errors remain significant. Moreover, prior research has focused primarily on calibration accuracy and procedure, neglecting the impact on the overall surgical navigation system. Consequently, these enhancements do not necessarily translate to accurate augmented reality in the optical see-through head mount due to systemic errors, including those in calibration. METHOD: This study introduces a simulated augmented reality-based calibration to address these issues. By replicating the augmented reality that appeared in the optical see-through head mount, the method achieves calibration that compensates for augmented reality errors, thereby reducing them. The process involves two distinct calibration approaches, followed by adjusting the transformation matrix to minimize displacement in the simulated augmented reality. RESULTS: The efficacy of this method was assessed through two accuracy evaluations: registration accuracy and augmented reality accuracy. Experimental results showed an average translational error of 2.14 mm and rotational error of 1.06° across axes in both approaches. Additionally, augmented reality accuracy, measured by the overlay regions' ratio, increased to approximately 95%. These findings confirm the enhancement in both calibration and augmented reality accuracy with the proposed method. CONCLUSION: The study presents a calibration method using simulated augmented reality, which minimizes augmented reality errors. This approach, requiring minimal manual intervention, offers a more robust and precise calibration technique for augmented reality applications in surgical navigation.

2.
J Imaging Inform Med ; 37(3): 1151-1159, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38332406

RESUMO

Previous research on computer-assisted jawbone reduction for mandibular fracture surgery has only focused on the relationship between fractured sections disregarding proper dental occlusion with the maxilla. To overcome malocclusion caused by overlooking dental articulation, this study aims to provide a model for jawbone reduction based on dental occlusion. After dental landmarks and fracture sectional features are extracted, the maxilla and two mandible segments are aligned first using the extracted dental landmarks. A swarm-based optimization is subsequently performed by simultaneously observing the fracture section fitting and the dental occlusion condition. The proposed method was evaluated using jawbone data of 12 subjects with simulated and real mandibular fractures. Results showed that the optimized model achieved both accurate jawbone reduction and desired dental occlusion, which may not be possible by existing methods.


Assuntos
Fraturas Mandibulares , Humanos , Fraturas Mandibulares/cirurgia , Cirurgia Assistida por Computador/métodos , Masculino , Feminino , Estudo de Prova de Conceito , Oclusão Dentária , Adulto , Mandíbula/cirurgia
3.
Comput Methods Programs Biomed ; 238: 107618, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37247472

RESUMO

BACKGROUND AND OBJECTIVES: An augmented reality (AR)-based surgical guidance system is often used with high-magnification zoom lens systems such as a surgical microscope, particularly in neurology or otolaryngology. To superimpose the internal structures of relevant organs on the microscopy image, an accurate calibration process to obtain the camera intrinsic and hand-eye parameters of the microscope is essential. However, conventional calibration methods are unsuitable for surgical microscopes because of their narrow depth of focus at high magnifications. To realize AR-based surgical guidance with a high-magnification surgical microscope, we herein propose a new calibration method that is applicable to the highest magnification levels as well as low magnifications. METHODS: The key idea of the proposed method is to find the relationship between the focal length and the hand-eye parameters, which remains constant regardless of the magnification level. Based on this, even if the magnification changes arbitrarily during surgery, the intrinsic and hand-eye parameters are recalculated quickly and accurately with one or two pictures of the pattern. We also developed a dedicated calibration tool with a prism to take focused pattern images without interfering with the surgery. RESULTS: The proposed calibration method ensured an AR error of < 1 mm for all magnification levels. In addition, the variation of focal length was within 1% regardless of the magnification level, and the corresponding variation with the conventional calibration method exceeded 20% at high magnification levels. CONCLUSIONS: The comparative study showed that the proposed method has outstanding accuracy and reproducibility for a high-magnification surgical microscope. The proposed calibration method is applicable to various endoscope or microscope systems with zoom lens.


Assuntos
Microscopia , Calibragem , Reprodutibilidade dos Testes
4.
Comput Methods Programs Biomed ; 230: 107323, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36608430

RESUMO

BACKGROUND AND OBJECTIVES: Intraoperative joint condition is different from preoperative CT/MR due to the motion applied during surgery, inducing an inaccurate approach to surgical targets. This study aims to provide real-time augmented reality (AR)-based surgical guidance for wrist arthroscopy based on a bone-shift model through an in vivo computed tomography (CT) study. METHODS: To accurately visualize concealed wrist bones on the intra-articular arthroscopic image, we propose a surgical guidance system with a novel bone-shift compensation method using noninvasive fiducial markers. First, to measure the effect of traction during surgery, two noninvasive fiducial markers were attached before surgery. In addition, two virtual link models connecting the wrist bones were implemented. When wrist traction occurs during the operation, the movement of the fiducial marker is measured, and bone-shift compensation is applied to move the virtual links in the direction of the traction. The proposed bone-shift compensation method was verified with the in vivo CT data of 10 participants. Finally, to introduce AR, camera calibration for the arthroscope parameters was performed, and a patient-specific template was used for registration between the patient and the wrist bone model. As a result, a virtual bone model with three-dimensional information could be accurately projected on a two-dimensional arthroscopic image plane. RESULTS: The proposed method was possible to estimate the position of wrist bone in the traction state with an accuracy of 1.4 mm margin. After bone-shift compensation was applied, the target point error was reduced by 33.6% in lunate, 63.3% in capitate, 55.0% in scaphoid, and 74.8% in trapezoid than those in preoperative wrist CT. In addition, a phantom experiment was introduced simulating the real surgical environment. AR display allowed to expand the field of view (FOV) of the arthroscope and helped in visualizing the anatomical structures around the bones. CONCLUSIONS: This study demonstrated the successful handling of AR error caused by wrist traction using the proposed method. In addition, the method allowed accurate AR visualization of the concealed bones and expansion of the limited FOV of the arthroscope. The proposed bone-shift compensation can also be applied to other joints, such as the knees or shoulders, by representing their bone movements using corresponding virtual links. In addition, the movement of the joint skin during surgery can be measured using noninvasive fiducial markers in the same manner as that used for the wrist joint.


Assuntos
Realidade Aumentada , Humanos , Punho/diagnóstico por imagem , Punho/cirurgia , Artroscopia , Articulação do Punho/diagnóstico por imagem , Articulação do Punho/cirurgia , Tomografia Computadorizada por Raios X/métodos , Imageamento Tridimensional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...