Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 12(1): e8509, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35136558

RESUMO

Soil C is the largest C pool in forest ecosystems that contributes to C sequestration and mitigates climate change. Tree diversity enhances forest productivity, so diversifying the tree species composition, notably in managed forests, could increase the quantity of organic matter being transferred to soils and alter other soil properties relevant to the C cycle.A ten-year-old tree diversity experiment was used to study the effects of tree identity and diversity (functional and taxonomic) on soils. Surface (0-10 cm) mineral soil was repeatedly measured for soil C concentration, C:N ratio, pH, moisture, and temperature in twenty-four tree species mixtures and twelve corresponding monocultures (replicated in four blocks).Soil pH, moisture, and temperature responded to tree diversity and identity. Greater productivity in above- and below-ground tree components did not increase soil C concentration. Soil pH increased and soil moisture decreased with functional diversity, more specifically, when species had different growth strategies and shade tolerances. Functional identity affected soil moisture and temperature, such that tree communities with more slow-growing and shade-tolerant species had greater soil moisture and temperature. Higher temperature was measured in communities with broadleaf-deciduous species compared to communities with coniferous-evergreen species.We conclude that long-term soil C cycling in forest plantations will likely respond to changes in soil pH, moisture, and temperature that is mediated by tree species composition, since tree species affect these soil properties through their litter quality, water uptake, and physical control of soil microclimates.

2.
Proc Biol Sci ; 280(1754): 20122598, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23303540

RESUMO

The concentration of CO(2) in the atmosphere is expected to double by the end of the century. Experiments have shown that this will have important effects on the physiology and ecology of photosynthetic organisms, but it is still unclear if elevated CO(2) will elicit an evolutionary response in primary producers that causes changes in physiological and ecological attributes. In this study, we cultured lines of seven species of freshwater phytoplankton from three major groups at current (approx. 380 ppm CO(2)) and predicted future conditions (1000 ppm CO(2)) for over 750 generations. We grew the phytoplankton under three culture regimes: nutrient-replete liquid medium, nutrient-poor liquid medium and solid agar medium. We then performed reciprocal transplant assays to test for specific adaptation to elevated CO(2) in these lines. We found no evidence for evolutionary change. We conclude that the physiology of carbon utilization may be conserved in natural freshwater phytoplankton communities experiencing rising atmospheric CO(2) levels, without substantial evolutionary change.


Assuntos
Adaptação Fisiológica/fisiologia , Dióxido de Carbono/administração & dosagem , Fitoplâncton/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Água Doce , Fotossíntese , Fitoplâncton/genética , Fitoplâncton/metabolismo , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...