Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2304299, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655817

RESUMO

The mortality caused by tuberculosis (TB) infections is a global concern, and there is a need to improve understanding of the disease. Current in vitro infection models to study the disease have limitations such as short investigation durations and divergent transcriptional signatures. This study aims to overcome these limitations by developing a 3D collagen culture system that mimics the biomechanical and extracellular matrix (ECM) of lung microenvironment (collagen fibers, stiffness comparable to in vivo conditions) as the infection primarily manifests in the lungs. The system incorporates Mycobacterium tuberculosis (Mtb) infected human THP-1 or primary monocytes/macrophages. Dual RNA sequencing reveals higher mammalian gene expression similarity with patient samples than 2D macrophage infections. Similarly, bacterial gene expression more accurately recapitulates in vivo gene expression patterns compared to bacteria in 2D infection models. Key phenotypes observed in humans, such as foamy macrophages and mycobacterial cords, are reproduced in the model. This biomaterial system overcomes challenges associated with traditional platforms by modulating immune cells and closely mimicking in vivo infection conditions, including showing efficacy with clinically relevant concentrations of anti-TB drug pyrazinamide, not seen in any other in vitro infection model, making it reliable and readily adoptable for tuberculosis studies and drug screening.

2.
Cell Rep Med ; 4(8): 101127, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37463584

RESUMO

The COVID-19 pandemic highlights an urgent need for effective antivirals. Targeting host processes co-opted by viruses is an attractive antiviral strategy with a high resistance barrier. Picolinic acid (PA) is a tryptophan metabolite endogenously produced in mammals. Here, we report the broad-spectrum antiviral activity of PA against enveloped viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), flaviviruses, herpes simplex virus, and parainfluenza virus. Mechanistic studies reveal that PA inhibits enveloped virus entry by compromising viral membrane integrity, inhibiting virus-cellular membrane fusion, and interfering with cellular endocytosis. More importantly, in pre-clinical animal models, PA exhibits promising antiviral efficacy against SARS-CoV-2 and IAV. Overall, our data establish PA as a broad-spectrum antiviral with promising pre-clinical efficacy against pandemic viruses SARS-CoV-2 and IAV.


Assuntos
COVID-19 , Vírus da Influenza A , Animais , Humanos , SARS-CoV-2/metabolismo , Internalização do Vírus , Pandemias , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Mamíferos/metabolismo
3.
Biomater Adv ; 139: 213003, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882150

RESUMO

Tuberculosis (TB) is one of the most widely prevalent infectious diseases that cause significant mortality. Bacillus Calmette-Guérin (BCG), the current TB vaccine used in clinics, shows variable efficacy and has safety concerns for immunocompromised patients. There is a need to develop new and more effective TB vaccines. Outer membrane vesicles (OMVs) are vesicles released by Mycobacteria that contain several lipids and membrane proteins and act as a good source of antigens to prime immune response. However, the use of OMVs as vaccines has been hampered by their heterogeneous size and low stability. Here we report that mycobacterial OMVs can be stabilized by coating over uniform-sized 50 nm gold nanoparticles. The OMV-coated gold nanoparticles (OMV-AuNP) show enhanced uptake and activation of macrophages and dendritic cells. Proteinase K and TLR inhibitor studies demonstrated that the enhanced activation was attributed to proteins present on OMVs and was mediated primarily by TLR2 and TLR4. Mass spectrometry analysis revealed several potential membrane proteins that were common in both free OMVs and OMV-AuNP. Such strategies may open up new avenues and the utilization of novel antigens for developing TB vaccines.


Assuntos
Membrana Externa Bacteriana , Proteínas de Membrana , Nanopartículas Metálicas , Mycobacterium tuberculosis , Vacinas , Membrana Externa Bacteriana/imunologia , Vesículas Revestidas/imunologia , Ouro , Humanos , Imunidade , Imunomodulação
4.
Biomater Adv ; 133: 112612, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35527151

RESUMO

Inhalable microparticle-based drug delivery platforms are being investigated extensively for Tuberculosis (TB) treatment as they offer efficient deposition in lungs and improved pharmacokinetics of the encapsulated cargo. However, the effect of physical parameters of microcarriers on interaction with Mycobacterium tuberculosis (Mtb) infected mammalian cells is underexplored. In this study, we report that Mtb-infected macrophages are highly phagocytic and microparticle surface charge plays a major role in particle internalization by infected cells. Microparticles of different sizes (0.5-2 µm) were internalized in large numbers by Mtb-infected THP-1 macrophages and murine primary Bone Marrow Derived Macrophages in vitro. Drastic improvement in particle uptake was observed with cationic particles in vitro and in mice lungs. Rapid uptake of rifampicin-loaded cationic microparticles allowed high intracellular accumulation of the drug and led to enhanced anti-bacterial function when compared to non-modified rifampicin-loaded microparticles. Cytocompatibility assay and histological analysis in vivo confirmed that the formulations were safe and did not elicit any adverse reaction. Additionally, pulmonary delivery of cationic particles in mice resulted in two-fold higher uptake in resident alveolar macrophages compared to non-modified particles. This study provides a framework for future design of drug carriers to improve delivery of anti-TB drugs inside Mtb-infected cells.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/farmacologia , Macrófagos , Mamíferos , Camundongos , Rifampina/farmacologia , Tuberculose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...