Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mem Cognit ; 48(1): 16-31, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31385241

RESUMO

Cognitive control, which allows for the selection and monitoring of goal-relevant behavior, is dynamically upregulated on the basis of moment-to-moment cognitive demands. One route by which these demands are registered by cognitive control systems is via the detection of response conflict. Yet working memory (WM) demands may similarly signal dynamic adjustments in cognitive control. In a delayed-recognition WM task, Jha and Kiyonaga (Journal of Experimental Psychology: Learning, Memory, & Cognition, 36(4), 1036-1042, 2010) demonstrated dynamic adjustments in cognitive control via manipulations of mnemonic load and delay-spanning cognitive interference. In the present study, we aimed to extend prior work by investigating whether affective interference may similarly upregulate cognitive control. In Experiment 1, participants (N = 89) completed a delayed-recognition WM task in which mnemonic load (memory load of one vs. two items) and delay-spanning affective interference (neutral vs. negative distractors) were manipulated in a factorial design. Consistent with Jha and Kiyonaga, the present results revealed that mnemonic load led to dynamic adjustments in cognitive control, as reflected by greater performance on trials preceded by high than by low load. In addition, we observed that affective interference could trigger dynamic adjustments in cognitive control, as evinced by higher performance on trials preceded by negative than by neutral distractors. These findings were subsequently confirmed in Experiment 2, which was a pre-registered replication study (N = 100). Thus, these results suggest that in addition to dynamic adjustments as a function of mnemonic load, affective interference, similar to cognitive interference (Jha & Kiyonaga Journal of Experimental Psychology: Learning, Memory, & Cognition, 36(4), 1036-1042, 2010), may trigger dynamic adjustments in cognitive control during a WM task.


Assuntos
Afeto/fisiologia , Atenção/fisiologia , Função Executiva/fisiologia , Memória de Curto Prazo/fisiologia , Reconhecimento Psicológico/fisiologia , Análise e Desempenho de Tarefas , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
3.
J Cogn Neurosci ; 12 Suppl 2: 90-105, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11506650

RESUMO

We conducted two fMRI studies to investigate the sensitivity of delay-period activity to changes in memory load during a delayed-recognition task for faces. In Experiment 1, each trial began with the presentation of a memory array consisting of one, two, or three faces that lasted for 3 sec. A 15-sec delay period followed during which no stimuli were present. The delay interval concluded with a one-face probe to which subjects made a button press response indicating whether this face was part of the memory array. Experiment 2 was similar in design except that the delay period was lengthened to 24 sec, and the memory array consisted of only one or three faces. We hypothesized that memory maintenance processes that spanned the delay interval would be revealed by their sensitivity to memory load. Long delay intervals were employed to temporally dissociate phasic activity engendered by the memory array from sustained activity reflecting maintenance. Regions of interest (ROIs) were defined anatomically for the superior frontal gyri (SFG), middle frontal gyri (MFG), and inferior frontal gyri (IFG), intraparietal sulci (IPS), and fusiform gyri (FFG) on a subject-by-subject basis. The mean time course of activity was determined for all voxels within these regions and for that subset of voxels within each ROI that correlated significantly with an empirically determined reference waveform. In both experiments, memory load significantly influenced activation 6--9 sec following the onset of the memory array with larger amplitude responses for higher load levels. Responses were greatest within MFG, IPS, and FFG. In both experiments, however, these load-sensitive differences declined over successive time intervals and were no longer significant at the end of the delay interval. Although insensitive to our load manipulation, sustained activation was present at the conclusion of the delay interval within MFG and other prefrontal regions. IPS delay activity returned to prestimulus baseline levels prior to the end of the delay period in Experiment 2, but not in Experiment 1. Within FFG, delay activity returned to prestimulus baseline levels prior to the conclusion of the delay interval in both experiments. Thus, while phasic processes engendered by the memory array were strongly affected by memory load, no evidence for load-sensitive delay-spanning maintenance processes was obtained.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Memória/fisiologia , Tempo de Reação/fisiologia , Adulto , Análise de Variância , Feminino , Lobo Frontal/fisiologia , Giro do Cíngulo/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Lobo Parietal/fisiologia , Fatores de Tempo
4.
Hum Brain Mapp ; 6(5-6): 383-9, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9788077

RESUMO

In two prior studies, we investigated the neural mechanisms of spatial attention using a combined event-related potential (ERP) and positron emission tomography (PET) approach (Heinze et al. [1994]: Nature 392:543-546; Mangun et al. [1997]: Hum Brain Mapp 5:273-279). Neural activations in extrastriate cortex were observed in the PET measures for attended stimuli, and these effects were related to attentional modulations in the ERPs at specific latencies. The present study used functional magnetic resonance imaging (fMRI) and ERPs in single subjects to investigate the intersubject variability in extrastriate spatial attention effects, and to qualitatively compare this to variations in ERP attention effects. Activations in single subjects replicated our prior group-averaged PET findings, showing attention-related increases in blood flow in the posterior fusiform and middle occipital gyri in the hemisphere contralateral to attended visual stimuli. All subjects showed attentional modulations of the occipital P1 component of the ERPs. These findings in single subjects demonstrate the consistency of extrastriate attention effects, and provide information about the feasibility of this approach for integration of electrical and functional imaging data.


Assuntos
Atenção/fisiologia , Potenciais Evocados Visuais/fisiologia , Imageamento por Ressonância Magnética/métodos , Percepção Espacial/fisiologia , Córtex Visual/fisiologia , Eletroencefalografia , Giro do Cíngulo/fisiologia , Humanos , Lobo Occipital/fisiologia , Tempo de Reação/fisiologia , Tomografia Computadorizada de Emissão , Gravação em Vídeo
5.
J Cogn Neurosci ; 9(1): 143-59, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23968186

RESUMO

Three patients with complete resection of the corpus callosum were tested in a series of memory tasks to determine the effects of callosotomy on the encoding and retrieval of information in memory. Verbal and pictorial conjunction tests were administered to measure patients' ability to consolidate the elements of a stimulus into an accurate composite memory. Patients were also tested in a paired-associate learning task to determine the consequences of callosotomy on the encoding and retrieval of associations between stimuli. Although callosotomy patients were unimpaired in the verbal conjunction task, results from both the pictorial conjunction task and the paired-associate learning task suggest that the absence of callosal cross-talk impairs encoding in these patients. In addition, the pattern of results in the paired-associate learning task suggests that callosotomy impairs retrieval processes. The role of the callosum in the formation of memory traces for nonverbal material and associations between verbal stimuli is discussed.

6.
J Exp Psychol Hum Percept Perform ; 22(2): 367-78, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8934850

RESUMO

Research on temporal-order judgments, reference frames, discrimination tasks, and links to oculomotor control suggest important differences between inhibition of return (IOR) and attentional costs and benefits. Yet, it is generally assumed that IOR is an attentional effect even though there is little supporting evidence. The authors evaluated this assumption by examining how several factors that are known to influence attentional costs and benefits affect the magnitude of IOR: target modality, target intensity, and response mode. Results similar to those previously reported for attention were observed: IOR was greater for visual than for auditory targets, showed an inverse relationship with target intensity, and was equivalent for manual and saccadic responses. Important parallels between IOR and attentional costs and benefits are indicated, suggesting that, like attention, IOR may in part affect sensory-perceptual processes.


Assuntos
Atenção , Percepção Auditiva , Inibição Psicológica , Orientação , Tempo de Reação , Percepção Visual , Adulto , Feminino , Humanos , Masculino , Psicofísica , Movimentos Sacádicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...